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Abstract: The Dirichlet integral is widely used in the fields of mathematical analysis, 

probability theory and physics. This paper explores the calculation of the generalized 

Dirichlet integral from zero to infinity. The author focuses on transitioning from special cases 

to deriving a general formula. The methodology used mainly include substitution and 

integration by parts. In the simplification of formulas, trigonometric identities and Frullani 

integral are also used. Moreover, the author obtains the general formula by discussing the odd 

and even power cases respectively. This paper deduces the general formula of Dirichlet 

integral by using Euler’s formula and binomial expansion. The result demonstrates that it uses 

special cases to find a general formula with the different order power and even the particular 

case of it, which is the same order power. The formula simplifies calculations. The 

significance of this paper lies in the calculation of Dirichlet integral general formula and 

various variations and give the answer. It provides an accurate formula for other studies using 

the this integral, and enhancing the overall body of knowledge in integral calculus.  

Keywords: Dirichlet integral, Integration by part, Frullani integral, Euler’s formula 

1. Introduction 

The development of calculus spans centuries, with its origins dating back to ancient Greece, Egypt 

and China, and Medieval India, Middle East, and Europe [1]. Early mathematicians laid the 

groundwork for integration by calculating volume and area. Calculus has greatly promoted the 

development of many fields. Thus, it became the core of modern mathematics. Among the many 

applications and studies of definite integrals, the Dirichlet integral is a very integration was first 

proposed by the German mathematician Dirichlet in his study of celestial mechanics. Dirichlet 

integral not only plays an important role in mathematical theory, but also has practical applications 

in signal processing, quantum mechanics and other fields.  

Dirichlet integrals play an important role in many fields. First of all, the Dirichlet integral is used 

as the kernel function of finite impulse response filters [2]. This property makes Dirichlet cores very 

useful in signal processing, especially in scenarios where precise control of the frequency components 

of the signal is required. In addition, Dirichlet integrals can be used to deal with partial differential 

equations with complex geometries and boundary conditions. For example, Dirichlet integrals are 

used to construct and solve Helmholtz equations with Dirichlet boundary conditions [3]. In statistics, 

the Dirichlet integral is used to solve the mean distribution of a Dirichlet process [4]. This improves 

the ability to handle complex random processes and functions. Also, it is also used in many fields of 

error theory, including deriving the probability limit theorem, improving Laplace’s approximation 
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method, and dealing with the asymptotic distribution of the median [5]. Furthermore, the Dirichlet 

integral is applied to define the gradient measure in a general harmonic space [6]. It is also used to 

correlate harmonic structures and differential equations in Euclidean domains [7]. This shows that 

Dirichlet integrals provide important theoretical support for function analysis and differential 

equations in harmonic spaces. On the other hand, the boundary conditions of Dirichlet integrals are 

also used in some fields. Dirichlet boundary conditions transform complex partial differential 

equation problems into boundary integral equation by specifying the value of the wave function on 

the boundary [8].  

This paper mainly shows the derivation of Dirichlet integral. The section 2 shows the numerical 

value of the definite integral result in the case of some particular example (the order of power). The 

section 3 shows the derivation of the general formula of Dirichlet integral with the different order of 

power and its particular case, which is the same order of power. By using the results in section 2 to 

test the correctness of general formulas demonstrating in section 3.  

2. Special cases of dirichlet integral 

2.1. Case of same order 

By consider the formula of 

𝐼(𝑛) = ∫ (
sin 𝜉

𝜉
)

𝑛

𝑑𝜉
∞

0

, (1) 

the author first takes the specific value of 𝑛 , in which 𝑛 = 1 , 𝑛 = 2 , and 𝑛 = 3  are calculated 

respectively. This takes into account both the cases where 𝑛 is odd and even. By employing this 

approach, one can streamline the problem and identify underlying patterns. The following processes 

are the outcomes when 𝑛 equals 1, 2, and 3. 

2.1.1. Case of 𝒏 =  𝟏 

When 𝑛 = 1, 𝐼(𝑛) can be written as ∫
sin 𝜉

𝜉

∞

0
𝑑𝜉. Since ∫ 𝑒−𝑎𝜉𝑑𝑎 =

1

𝜉

∞

0
 where 𝑎 is a variable, while 𝜉 

is a constant in the formula. Thus ∫
sin 𝜉

𝜉

∞

0
𝑑𝜉 can be written like this: 

∫
sin 𝜉

𝜉

∞

0

𝑑𝜉 = ∫ sin 𝜉 ∫ 𝑒−𝑎𝜉𝑑𝑎 𝑑𝜉 = ∫ ∫ sin 𝜉 𝑒−𝑎𝜉𝑑𝜉 𝑑𝑎
∞

0

∞

0

∞

0

∞

0

(2) 

Then, the author assumes ∫ sin 𝜉 𝑒−𝑎𝜉𝑑𝜉 
∞

0
is 𝐽. By using the integration by part, one part of the 

formula (2) can be integrand as 

𝐽 = [
−1

𝑎
𝑒−𝑎𝜉 sin 𝜉]

0

∞

+
1

𝑎
∫ cos 𝜉 𝑒−𝑎𝜉𝑑𝜉

∞

0

(3) 

Since lim
𝜉→∞

−1

𝑎
𝑒−𝑎𝜉 sin 𝜉 = 0 and lim

𝜉→0

−1

𝑎
𝑒−𝑎𝜉 sin 𝜉 = 0. Thus, the formula can be simplified and 

also use integration by part: 

𝐽 =
1

𝑎
∫ cos 𝜉 𝑒−𝑎𝜉𝑑𝜉

∞

0

=
1

𝑎
[−

1

𝑎
𝑒−𝑎𝜉 cos 𝜉]

0

∞

−
1

𝑎
∫ sin 𝜉 𝑒−𝑎𝜉𝑑𝜉

∞

0

(4) 
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This can be further simplified to 
1

𝑎
(

1

𝑎
−

1

𝑎
∫ sin 𝜉 𝑒−𝑎𝜉𝑑𝜉

∞

0
) =

1

𝑎2 −
1

𝑎2 ∫ sin 𝜉 𝑒−𝑎𝜉𝑑𝜉
∞

0
. It is 

obvious that 𝐽 =
1

𝑎2
−

1

𝑎2
𝐽. Then, 𝐽 =

1

𝑎2+1
 and substitute it into the formula (2), the author can find 

that 

∫
sin𝜉

𝜉

∞

0

𝑑𝜉 = ∫
1

𝑎2 + 1

∞

0

𝑑𝑎 = [arctan𝑎]
0

∞
=

𝜋

2
(5) 

2.1.2. Case of 𝒏 =  𝟐 

When 𝑛 = 2, 𝐼(𝑛) can be written as ∫
(sin 𝜉)2

𝜉2

∞

0
𝑑𝜉. In order to simplify this integral, the author first 

adopts the integration by parts method. In this example, the author expresses the integral as: 

∫
(sin 𝜉)

2

𝜉2

∞

0

𝑑𝜉 = [−
(sin 𝜉)

2

𝜉
]

0

∞

+ ∫
2 sin 𝜉 cos 𝜉

𝜉

∞

0

𝑑𝜉 = ∫
sin 2𝜉

𝜉

∞

0

𝑑𝜉 (6) 

After using the integration by part, the author uses the trigonometric identity 2 sin 𝜉 cos 𝜉 = sin 2𝜉 

to simplify the integral. Next, the authors further simplify the integral by substituting 𝑢 = 2𝜉 and 

then 
1

2
𝑑𝑢 = 𝑑𝜉. With this substitution, the integral can be expressed as: 

∫
sin 2𝜉

𝜉

∞

0

𝑑𝜉 = ∫
sin𝑢

𝑢

∞

0

𝑑𝑢 (7) 

Obviously, its expression is the same as that of 𝑛 = 1. According to Eq. (5), the result is 

∫
(sin 𝜉)

2

𝜉2

∞

0

𝑑𝜉 =
𝜋

2
(8) 

2.1.3. Case of 𝒏 =  𝟑 

When 𝑛 = 3 , 𝐼(𝑛)  can be written as ∫
(sin 𝜉)3

𝜉3

∞

0
𝑑𝜉 . To simplify this integral, the author uses 

trigonometric sin 3𝜉 = 3 sin 𝜉 − 4(sin 𝜉)3. Thus, (sin 𝜉)3 =
3 sin 𝜉−sin 3𝜉

4
 and ∫ (

sin 𝜉

𝜉
)

𝑛

𝑑𝜉
∞

0
 can be 

written in the form as 

∫ (
sin 𝜉

𝜉
)

3

𝑑𝜉
∞

0

=
1

4
∫

3 sin 𝜉 − sin 3𝜉

𝜉3

∞

0

𝑑𝜉 (9) 

By using integration by part, 

1

4
∫

3 sin 𝜉 − sin 3𝜉

𝜉3

∞

0

𝑑𝜉 =
1

4
([−

3 sin 𝜉 − sin 3𝜉

2𝜉2
]

0

∞

+
1

2
∫

3 cos 𝜉 − cos 3𝜉

𝜉2

∞

0

𝑑𝜉) (10) 

Due to lim
𝜉→0

−
3 sin 𝜉−sin 3𝜉

2𝜉2 = 0 and lim
𝜉→∞

−
3 sin 𝜉−sin 3𝜉

2𝜉2 = 0. So [−
3 sin 𝜉−sin 3𝜉

2𝜉2 ]
0

∞

= 0 and Eq. (10) 

continue to use integration by part. As shown: 
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1

8
∫

3 cos 𝜉 − cos 3𝜉

𝜉2

∞

0

𝑑𝜉 =
1

8
([−

3 cos 𝜉 − cos 3𝜉

𝜉
]

0

∞

+ ∫
−3 sin 𝜉 + 9 sin 3𝜉

𝜉
𝑑𝜉

∞

0

) (11) 

Also, [−
3 cos 𝜉−cos 3𝜉

𝜉
]

0

∞

= 0. So, the solution is 

∫ (
sin 𝜉

𝜉
)

3

𝑑𝜉
∞

0

=
1

8
(−3 ∫

sin 𝜉

𝜉

∞

0

𝑑𝜉 + 9 ∫
sin 3𝜉

𝜉

∞

0

𝑑𝜉) =
3𝜋

8
(12) 

2.2. Case of different orders 

In previous research, an analysis was conducted for the specific case where 𝑚 = 𝑛 of 

𝑓(𝑚, 𝑛) = ∫
(sin 𝜉)

𝑚

𝜉𝑛
𝑑𝜉

∞

0

(13) 

for 𝑚, 𝑛 ∈  ℤ+ . The current research will extend to the scenario where 𝑚 ≠ 𝑛. In delving into the 

general formula for the integral 𝑓(𝑚, 𝑛), it is beneficial to initially examine specific values of 𝑚 and 

𝑛, particularly satisfying the condition 1 ≤ 𝑛 ≤ 𝑚. This methodological approach facilitates a deeper 

understanding of the integral’s properties and provides a foundational basis for deriving more 

comprehensive solutions. The author will specifically analyze the following cases: 𝑚 = 3 and 𝑛 = 1, 

𝑚 = 3 and 𝑛 = 2. The analysis of these specific examples will help people better understand the 

behavior of the integral and provide references for deriving a general formula. Extending this analysis 

to other values of 𝑚 and 𝑛 that meet the condition  1 ≤ 𝑛 ≤ 𝑚 allows for further validation and 

derivation of generalized results.  

Case 1: When 𝑚 = 3 and 𝑛 = 1. 𝑓(𝑚, 𝑛) can be written as ∫
(sin 𝜉)3

𝜉
𝑑𝜉

∞

0
. By using trigonometric 

identities, it can be transformed into the form of 

∫
3 sin 𝜉 − sin 3𝜉

4𝜉
𝑑𝜉

∞

0

=
1

4
(3 ∫

sin 𝜉

𝜉
𝑑𝜉

∞

0

− ∫
sin 3𝜉

𝜉
𝑑𝜉

∞

0

) (14) 

For the section∫
sin 3𝜉

𝜉
𝑑𝜉

∞

0
 . By substitution, let 3𝜉 be 𝑢. It can be ∫

sin 𝑢

𝑢
𝑑𝑢

∞

0
. For both ∫

sin 𝜉

𝜉
𝑑𝜉

∞

0
 

and ∫
sin 𝑢

𝑢
𝑑𝑢

∞

0
 are the same form of formula (5). So, they are equal to 

𝜋

2
. Then,  

∫
(sin 𝜉)

3

𝜉
𝑑𝜉

∞

0

=
1

4
(3 ∫

sin 𝜉

𝜉
𝑑𝜉

∞

0

− ∫
sin 3𝜉

𝜉
𝑑𝜉

∞

0

) =
𝜋

4
(15) 

Case 2: When 𝑚 = 3 and 𝑛 = 2. 𝑓(𝑚, 𝑛) can be written as ∫
(sin 𝜉)3

𝜉2
𝑑𝜉

∞

0
. By using trigonometric 

identity, it can be transformed into the form of 

∫
sin 𝜉 (1 − (cos 𝜉)

2
)

𝜉2
𝑑𝜉

∞

0

(16) 

According to the integration by part,  
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∫
sin 𝜉 (1 − (cos 𝜉)

2
)

𝜉2
𝑑𝜉

∞

0

= [−
sin 𝜉 (1 − (cos 𝜉)

2
)

𝜉
]

0

∞

+ ∫
3 cos 𝜉 − 3(cos 𝜉)

3

𝜉
𝑑𝜉

∞

0

(17) 

For lim
𝜉→0

sin 𝜉(1−(cos 𝜉)2)

𝜉
= lim

𝜉→0

(sin 𝜉)3

𝜉
= 0 , for lim

𝜉→∞

sin 𝜉(1−(cos 𝜉)2)

𝜉
, since sin 𝜉 (1 − (cos 𝜉)2) is 

bounded and 
1

𝜉
→ 0. So [−

sin 𝜉(1−(cos 𝜉)2)

𝜉
]

0

∞

= 0. By using trigonometric identity again for 3(cos 𝜉)3, 

it is observed that 

∫
3 cos 𝜉 − 3(cos 𝜉)

3

𝜉
𝑑𝜉

∞

0

=
3

4
∫

cos 𝜉 − cos 3𝜉

𝜉
𝑑𝜉

∞

0

(18) 

Since the integral satisfies the form of ‘Frullani integral’ ∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
𝑑𝑥

∞

0
= 𝑓(0)𝑙𝑛

𝑏

𝑎
, (𝑎, 𝑏 >

0) [9], thus the solution of ∫
(sin 𝜉)3

𝜉2 𝑑𝜉
∞

0
 is 

3

4
∫

cos 𝜉 − cos 3𝜉

𝜉
𝑑𝜉

∞

0

=
3

4
ln 3. (19) 

3. General cases of dirichlet integral 

3.1. General formula 

In order to obtain the general formula of the integral 𝑓(𝑚, 𝑛), this paper will use the method of 

classification discussion, respectively for the case of ever power and odd power, to derive the general 

formula of the integral in detail [10].  

The author firstly starts with the integral of even powers in both numerator and denominator. Let 

𝑔(𝑚, 𝑛) = ∫
(sin 𝜉)2𝑚

𝜉2𝑛 𝑑𝜉
∞

0
. First, the authors expand (sin 𝜉)2𝑚  to make it easier to integrate. 

According to the Euler’s formula 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥, (sin 𝜉)2𝑚 can be expressed as (
𝑒𝑖𝜉−𝑒−𝑖𝜉

2𝑖
)

2𝑚

. 

Then, through the binomial theorem, the expression of the complex function is expanded as  

(
𝑒𝑖𝜉 − 𝑒−𝑖𝜉

2𝑖
)

2𝑚

=
1

(2𝑖)
2𝑚

∑ (
2𝑚

𝑘
)

2𝑚

𝑘=0

(𝑒𝑖𝜉)
2𝑚−𝑘

(−𝑒−𝑖𝜉)
𝑘

(20) 

In order to simplify 
1

(2𝑖)2𝑚
∑ (2𝑚

𝑘
)2𝑚

𝑘=0 (𝑒𝑖𝜉)
2𝑚−𝑘

(−𝑒−𝑖𝜉)
𝑘

 further, the author breaks it down and 

simplifies it to 
1

(−4)2𝑚
∑ (2𝑚

𝑘
)𝑚−1

𝑘=0 (−1)𝑘𝑒−𝑖(2𝑚−2𝑘)𝜉 . Such a resolution is conducive to further 

simplification by complex conjugation properties. Then, according to the Euler’s formula 𝑒𝑖𝑥 =
cos 𝑥 + 𝑖 sin 𝑥 again, and another form 𝑒−𝑖𝑥 = cos 𝑥 − 𝑖 sin 𝑥. The author combines two above forms 

as 2cos 𝜉 = 𝑒−𝑖𝜉 + 𝑒𝑖𝜉. Thus, the formula can be expressed as  

1

(−4)
2𝑚

× 2 ∑ (
2𝑚

𝑘
)

𝑚−1

𝑘=0

(−1)
𝑘

cos(2𝑚 − 2𝑘)𝜉 + (−1)
𝑚

(
2𝑚

𝑚
) (21) 
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Since (−4)2𝑚 = (−1)𝑚22𝑚, and then the author collated and substituted into the formula, the 

expression of (sin 𝜉)2𝑚 can be obtained as 

(sin 𝜉)
2𝑚

=
1

22𝑚−1(−1)
𝑚 ∑ (−1)

𝑘
(

2𝑚

𝑘
) cos(2𝑚 − 2𝑘)𝜉 +  

1

22𝑚
(

2𝑚

𝑚
)

𝑚−1

𝑘=0

(22) 

Now, the author differentiates (sin2𝑚)2𝑛−1. For the term 
1

22𝑚−1(−1)𝑚
∑ (−1)𝑘(2𝑚

𝑘
) cos(2𝑚 −𝑚−1

𝑘=0

2𝑘)𝜉 of the expansion of (sin 𝜉)2𝑚, its derivative is  

1

22𝑚−1(−1)
𝑚 ∑ (−1)

𝑘
(

2𝑚

𝑘
) (2𝑚 − 2𝑘)

2𝑛−1
cos ((2𝑚 − 2𝑘)𝜉 +

(2𝑛 − 1)𝜋

2
)

𝑚−1

𝑘=0

(23) 

According to the induction formula of trigonometric cos (𝛼 +
(2𝑛−1)𝜋

2
) = (−1)𝑛−1 sin 𝛼 , the 

author simplifies the formula above and obtains 

𝑔(𝑚, 𝑛) =
(−1)

𝑛−1

22𝑚−1(−1)
𝑚 ∑ (−1)

𝑘
(

2𝑚

𝑘
) (2𝑚 − 2𝑘)

2𝑛−1
sin(2𝑚 − 2𝑘)𝜉

𝑚−1

𝑘=0

(24) 

For another term of the expansion of (sin 𝜉)2𝑚, 
1

22𝑚 (2𝑚
𝑚

) is a constant term. So, its derivative is 

zero. Thus, the whole expression of the derivative of (sin2𝑚)2𝑛−1 is (24). Then,  

𝑔(𝑚, 𝑛) = ∫
(−1)

𝑛−1

22𝑚−1(−1)
𝑚 ∑ (−1)

𝑘
(

2𝑚

𝑘
) (2𝑚 − 2𝑘)

2𝑛−1
sin(2𝑚 − 2𝑘)𝜉

𝑚−1

𝑘=0

𝑑𝜉
∞

0

 

=
(−1)

𝑚−𝑛

22𝑚−1(2𝑛 − 1)!
∑ (−1)

𝑘
(

2𝑚

𝑘
) (2𝑚 − 2𝑘)

2𝑛−1

𝑚−1

𝑘=0

∫
sin(2𝑚 − 2𝑘)𝜉

𝜉
𝑑𝜉

∞

0

(25) 

From the conclusion is the section two, ∫
sin 𝑎𝜉

𝜉
𝑑𝜉

∞

0
=

𝜋

2
. Thus, 𝑔(𝑚, 𝑛) can be still simplified as 

𝑔(𝑚, 𝑛) =
(−1)

𝑚−𝑛
𝜋

22𝑚(2𝑛 − 1)!
∑ (−1)

𝑘
(

2𝑚

𝑘
) (2𝑚 − 2𝑘)

2𝑛−1
 

𝑚−1

𝑘=0

(26) 

Now, the author will discuss the integral with odd power, which is 𝑢(𝑚, 𝑛) = ∫
(sin 𝜉)2𝑚+1

𝜉2𝑛+1 𝑑𝜉
∞

0
. 

By the similar deduction of the expansion will even power. (sin 𝜉)2𝑚+1 =
1

22𝑚(−1)𝑚
∑ (−1)𝑘(2𝑚+1

𝑘
) sin(2𝑚 + 1 − 2𝑘)𝜉𝑚−1

𝑘=0 . Next, the author differentiates ((sin 𝜉)2𝑚+1)2𝑛 , 

which is equal to  

(−1)
𝑚−𝑛

22𝑚
∑(−1)

𝑘
(

2𝑚 + 1

𝑘
) (2𝑚 + 1 − 2𝑘)

2𝑛
sin(2𝑚 + 1 − 2𝑘)𝜉 

𝑚

𝑘=0

(27) 

Then, the author plugs the 2𝑛𝑡ℎ derivative in the same way as even power term and explores the 

expression as  
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𝑢(𝑚, 𝑛) =
(−1)𝑚−𝑛

2
2𝑚(2𝑛)!

∑(−1)𝑘 (
2𝑚 + 1

𝑘
) (2𝑚 + 1 − 2𝑘)2𝑛 ∫

sin(2𝑚 + 1 − 2𝑘)𝜉

𝜉
𝑑𝜉

∞

0

 

𝑚

𝑘=0

(28) 

In addition, it is well-known that ∫
sin(2𝑚+1−2𝑘)𝜉

𝜉
𝑑𝜉

∞

0
 is the form of ∫

sin 𝑎𝜉

𝜉
𝑑𝑥

∞

0
=

𝜋

2
. Thus 

𝑢(𝑚, 𝑛) can be simplifies as  

𝑢(𝑚, 𝑛) =
(−1)𝑚−𝑛𝜋

2
2𝑚(2𝑛)!

∑(−1)𝑘 (
2𝑚 + 1

𝑘
) (2𝑚 + 1 − 2𝑘)2𝑛 

𝑚

𝑘=0

(29) 

The cases of odd power and even power have been discussed separately and the corresponding 

integral results have been obtained. Then, the general formula of 𝑓(𝑚, 𝑛)  can be deduced by 

combining the expression (26) and (29). It can be concluded in a single formula that 

∫
(sin 𝜉)𝑚

𝜉𝑛
𝑑𝜉

∞

0

=
(−1)

𝑚−𝑛
2 𝜋

2
𝑚(𝑛 − 1)!

∑ (−1)𝑘 (
𝑚

𝑘
) (𝑚 − 2𝑘)𝑛−1 

⌊
𝑚−1

2
⌋

𝑘=0

 (30) 

3.2. Special cases 

The first case is 𝑚 ≠ 1. However, the general formula for 𝐼(𝑛) is actually a particular case of 𝑓(𝑚, 𝑛) 

with 𝑚 = 𝑛. Therefore, by analyzing the properties of 𝑓(𝑚, 𝑛) and substituting 𝑚 = 𝑛, the author 

can derive a concrete general formula for 𝐼(𝑛) as 

∫ (
sin 𝜉

𝜉
)

𝑛

𝑑𝜉
∞

0

=
𝜋

2𝑛(𝑛 − 1)!
∑ (−1)

𝑘
(

𝑛

𝑘
) (𝑛 − 2𝑘)

𝑛−1
 

⌊
𝑛−1

2
⌋

𝑘=0

(31)
 

The other case is 𝑛 ≠ 1. Through the above derivation, the author successfully derived the general 

formula of 𝑓(𝑚, 𝑛)  and the expression of its particular case 𝐼(𝑛). the author deeply studies the 

problem of integrating sin 𝑥 functions with different powers, especially for integrals 𝑓(𝑚, 𝑛) where 

𝑚 and 𝑛 are positive integers. The author first uses the binomial theorem to express the ever power 

and odd power of sin 𝑥  function as the linear combination of cos 𝑥  function, and simplifies the 

integration process by integration by parts. In particular, the author pays attention to the particular 

case of 𝑚 = 𝑛, 𝐼(𝑛). Thus, a simplified integral form is deduced.  

In order to prove Eq. (30) and (31) are correct, the author substitutes the real case in the previous 

sectsion of the article for verification. The author substitutes the different order with 𝑚 = 3 and 𝑛 =
1, and the same order with 𝑛 = 2 into the general formula respectively. The result demonstrates that 

when 𝑛 = 2 , ∫ (
sin 𝜉

𝜉
)

2

𝑑𝜉
∞

0
=

𝜋

4(2−1)!
∑ (−1)𝑘(2

𝑘
)(2 − 2𝑘)1 =

π

2
 1

𝑘=0 . When 𝑚 = 3  and 𝑛 = 1 , 

∫
(sin 𝜉)3

𝜉1
𝑑𝜉

∞

0
=

−𝜋

23
∑ (−1)𝑘(3

𝑘
) =

π

4
 1

𝑘=0 . This is consistent with real case, so it passes the test.  

4. Conclusion 

The paper has systematically deduced the generalized Dirichlet integral. The paper finds the definite 

Dirichlet integral from zero to infinite for a particular case by first using some special examples. The 

author discusses and obtains the general formula of Dirichlet integral by diving even and odd power 

cases. The main body of the paper has presented various methods and advanced techniques for 

evaluating these integrals, emphasizing their importance in mathematical analysis. Through an in-

depth examination of special cases, the author has derived a general formula that not only streamlines 
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the calculation process but also broadens the applicability of the Dirichlet integral to a wider range 

of problems. In conclusion, this paper has provided valuable deriving process of the generalized 

Dirichlet integral and a foundation for further study and practical application in calculus.  

Furthermore, there are still parts of the paper that could be improved. The paper hopes to use 

multiple methodologies to complete the proof, such as complex analysis and Fourier change. In 

addition, the results from different proving methods should be compare and analysis the difference 

and application situation between them, so as to make the conclusion more reliable. In addition, the 

paper can also discuss some real applications including in mathematics or other fields. By engaging 

with researchers in fields such as quantum mechanics, fluid dynamics and materials science, new 

avenues for applying the integral may emerge. It can show in detail how the Dirichlet integral is used 

and its importance.  
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