

Application of Pseudo-random Algorithm in Card Drawing
Games

Jinghan Huang

Wakeland High school, Frisco, US

jinghan.huang.557@k12.friscoisd.org

Abstract: Anime-style gacha games with card drawing mechanism as the core have shown

great competitiveness in today's market, and pseudo-random algorithm is the core component

of this card drawing mechanism. This paper uses data analysis research methods to mainly

explore the composition of pseudo-random algorithms and their application in card drawing

games. It aims to study the application effect of pseudo-random algorithms in card drawing

games and their possible application areas. By analyzing the card drawing data published by

game companies, explore the players' acceptance and preference for this algorithm, and then

propose optimization solutions or further applications. Explore its application in a wider

range of fields through analysis. This paper found that pseudo-random algorithms have

played a positive role in the development and operation of card drawing games. On the

premise of ensuring the fun of the random card drawing mechanism, it avoids the occurrence

of extreme samples in a diversified way, and indeed guarantees the gaming experience of the

vast majority of players.

Keywords: Pseudo-random algorithm, Gacha game, Dynamic Probability, Bottom-line

guarantee mechanism

1. Introduction

In the game, randomness is everywhere. The results of randomness bring about contingency and

uncertainty, which satisfy the players' sense of freshness and ensure the activity of the game. However,

complete randomness will lead to differences in player experience. For example, people with good

luck can draw rare items several times in a row, while people with bad luck may never draw them.

This phenomenon has led to a decline in the experience and willingness of some players to play the

game. To address this issue, pseudo-random algorithms are used. Game companies adjust the output

of these algorithms to control the probability of item appearance, thereby avoiding extreme outcomes

caused by pure randomness.

This approach ensures the relative rationality and fairness of the game mechanism and effectively

stimulates players' desire to collect. This paper analyzes the basic principles of pseudo-random

algorithms and their application in card drawing mechanisms by extensively referencing materials

and data. Through case studies of typical card-drawing games, the paper explores the algorithm's

impact on game operations and provides suggestions for optimization and future application. By

studying the application and performance of pseudo-random algorithms in card drawing systems, this

paper aims to enhance the fairness and enjoyment of games and assist developers in making targeted

adjustments to support long-term game sustainability.

Proceedings of the 3rd International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/106/2025.22936

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

40

2. The basic principle of pseudo-random algorithm

2.1. Overview of basic principles

Pseudo-randomness is mainly achieved through a pseudo-random number generator (PRNG). By

inputting a seed, a random number sequence can be obtained. Since this number sequence is generated

using a certain algorithm and a certain seed, it means that the same number sequence can be generated

through the same initial conditions (such as seeds), which is pseudo-randomness and is also contrary

to true randomness, such as random numbers generated by physical processes.

PRNG has determinism and periodicity. Determinism is as mentioned above. Inputting the same

seed can make PRNG output the same sequence of numbers. Periodicity means that the sequence will

eventually repeat. Although this is not an ideal feature (meaning it is not truly random), PRNG is still

used in practice because it is fast in generation and can output a large number of numbers in a short

period of time.

2.2. Linear congruential generator

The linear congruential generator (LCG) is one of the oldest and most famous pseudo-random

algorithms. It was published by Thomson in 1958 and Rotenberg improved the basic formula in 1960

[1-2]. LCG is defined by the following recursive formula:

 𝑋_(𝑛 + 1) = (𝑎𝑋_𝑛 + 𝑐) 𝑚𝑜𝑑 𝑚 (1)

where X is a pseudo-random number, and

m, 0 < m − −tℎe "modulus"

a, 0 < a < m − − tℎe "multiplier"

c, 0 ≤ c < m − − tℎe "increment"
X0, 0 ≤ X0 < m − − tℎe "seed" or "start value"

When m is a prime number and c=0, the algorithm is called Lehmer RNG, named and published

by D.H. Lehmar in 1951. Lehmer RNG can be regarded as a special case of LCG, with more

restrictions than LCG, such as X0 must be coprime with m, etc. [3]. When c≠0, the algorithm is

called a mixed congruential generator [4].

The advantages of the LCG algorithm are its concise code and extremely high computational

efficiency at the time (the time complexity of generating a pseudo-random number is constant level).

Its disadvantages are its pickiness about the parameter m. In actual operations, only the case where

m is a power of 2 is considered to avoid a large number of modular operations. In terms of period, it

is not as good as the Mersenne Twister algorithm, which has a longer period (usually 2
19937 − 1),

better mass distribution and more efficient operation [5-6].

The following code is a simple implementation of LCG in Python:

def lcg(m, a, c, seed):

 while True:

 seed = (a * seed + c) % m

 yield seed

Where m, a, and c are Modulus, Multiplier, and Increment in Formula 1, respectively. Seed is the

initial value that determines the starting point of the random number sequence. “yield seed” turns the

function into a Python generator that continuously generates random numbers instead of calculating

all the values at once.

Proceedings of the 3rd International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/106/2025.22936

41

3. The dynamics of probability in games

Pseudo-random algorithms are used in Dota 2 to represent statistical mechanisms for certain effects

with a certain probability. The probability of an effect occurring in the Nth test after the last successful

trigger is given by the following formula:

 P(N) = C ⋅ N (2)

This algorithm is also used in gacha games. Obviously, for each instance where a rare card is not

drawn, this algorithm will increase the probability of drawing a rare card next time by the constant C.

Constant C is also the initial winning probability, and the counter will be reset every time a rare card

is drawn.

Consider that if we use a true random algorithm and set the winning rate to 25%, after 10 draws,

there is still (0.75)10 = 5.63% of people still get nothing, which greatly affects the game experience

of this part of unlucky players. Therefore, the advantage of the algorithm in Dota 2 is that it can stably

guarantee the actual winning rate. The relationship between the actual winning probability and the C

value is shown in Table 1 below:

Table 1: The relationship between the actual winning probability and the initial setting probability

Actual winning rate C value

5% 0.00380165830355313910175646

10% 0.01474584478107267587705081

15% 0.03222091437308767497511735

20% 0.05570404294978185185839865

25% 0.08474409185231699027527480

Back to the assumption mentioned in the previous paragraph. To ensure that the actual winning r

ate is 25%, according to Table 1, the corresponding C value should be 0.0847440918523169902752

7480, which is approximately equal to 8.47%. After that, each time a rare card is not drawn, the pro

bability increases by 8.47% and the counter increases by 1, until a rare card is drawn and the counte

r is reset, and the probability returns to the initial value of 8.47%.

Figure 1 shows the difference in expected draws between this pseudo-random algorithm and the t

rue random algorithm (the blue one is the pseudo-random algorithm). It can be seen that the main fu

nction of pseudo-randomness is to concentrate the expected draws of players into one area, avoiding

 extreme situations and raising the lower limit of player experience in disguise. In contrast, the true r

andom algorithm, in theory, has no upper limit on the number of draws. In the most extreme case, ra

re cards may never be drawn. As shown in the red part of Figure 1, under the operation of the true ra

ndom algorithm, the expected draws of some players are far higher than the average, which leads to

poor game experience and a decrease in the willingness to play, and ultimately leads to player loss.

Figure 1: Comparison of expected draw numbers between pseudo-random and true random

Proceedings of the 3rd International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/106/2025.22936

42

4. Case analysis of pseudo-random algorithms in genshin impact

4.1. Basic working principle

In the Gacha game, the card pool contains cards of different rarities. The higher the rarity of the card,

the lower the weight and the smaller the probability of winning.

Taking the game Genshin Impact as an example, the basic rate of 5-star characters is only 0.600%,

and the basic rate of 4-star characters is 5.100%. When a 5-star character is drawn, there is a 50%

probability that it is a limited character of the current period, and the other 50% is a permanent 5-star

character. Obviously, the probability of drawing a limited 5-star character is not high, or even very

low. In order to satisfy the player's psychology to the greatest extent while promoting player

consumption, and to prevent players from being disappointed by not being able to draw rare cards,

the game development department introduced a guarantee mechanism in the card drawing system.

4.2. Bottom-line guarantee mechanism

The guarantee mechanism in the card-drawing game can be roughly divided into two categories

according to the different objects of the code: soft guarantee and hard guarantee. Soft guarantee means

that if the player still does not get a rare character after multiple consecutive card draws, the system

will increase the probability of rare items appearing. Hard guarantee means that when the player

reaches a certain number of card draws but still does not draw a rare card, the system will force a rare

card to drop. As mentioned in chapter 3, if the role of pseudo-randomness is to increase the lower

limit in disguise, then the guarantee mechanism is more like a lock.

Back to the example of Genshin Impact mentioned earlier, its guarantee mechanism is a kind of

hard guarantee, which is set to obtain a 5-star character for up to 90 card draws and a 4-star or higher

item for up to 10 card draws. After adding the guarantee mechanism, the overall probability of

obtaining a 5-star character increased to 1.600%.

4.3. Impact and player feedback

Relatively speaking, the guaranteed mechanism balances the experience of some players with bad

luck, ensuring that players can stably obtain rare cards in uncertain draws, which in turn has a positive

impact on the fairness of the game. At the same time, the novelty and uncertainty of the algorithm

also bring more profits to the game. According to Sensor Tower data, Genshin Impact attracted $245

million in the first month of its launch; in the first year of its launch, the total revenue on Google Play

and App Store reached $2.3 billion. It is not difficult to see from the data that, as a game that uses

card drawing as the main means of profit, the pseudo-random algorithm has a positive impact on

players' consumption and willingness to play.

5. Optimization of pseudo-random algorithms

Although the pseudo-random algorithm has greatly optimized the card drawing environment,

avoiding too unlucky situations, and adding a guaranteed mechanism to give players a "visible"

bottom line. In order to give players a better gaming experience and ensure their satisfaction with the

game, the game development team has made many optimizations based on the previous article.

Back to the example of Genshin Impact mentioned above. If the 5-star character obtained in this

card drawing is not a limited 5-star character, then the 5-star character obtained in the next card

drawing must be a limited 5-star character. Not only that, the development team also added a "capture

light" mechanism, with a basic probability of 0.018%. In the case of triggering "Capturing Radiance",

Proceedings of the 3rd International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/106/2025.22936

43

the probability of obtaining a limited 5-star character when drawing a 5-star character increases from

50% to 55%, further increasing the probability of drawing the desired character.

6. Conclusion

This paper mainly discusses the application of pseudo-random algorithms in card-drawing games. It

proves the significant role of pseudo-random algorithms in attracting players and improving the

playability of games. This paper has not yet explored the player satisfaction survey in depth, and has

not used methods such as questionnaires to analyze the players' specific acceptance of pseudo-random

algorithms and their actual game experience. In the future, pseudo-random algorithms will play a role

in various fields, such as algorithm encryption and traffic signal control.

References

[1] W. E. Thomson, A Modified Congruence Method of Generating Pseudo-random Numbers, The Computer Journal,

Volume 1, Issue 2, 1958, Page 83, https://doi.org/10.1093/comjnl/1.2.83

[2] A. Rotenberg. 1960. A New Pseudo-Random Number Generator. J. ACM 7, 1 (Jan. 1960), 75–77.

https://doi.org/10.1145/321008.321019

[3] Lehmer, D.H. (1951) Mathematical Methods in Large-Scale Computing Units. The Annals of' the Computation

Laboratory of Harvard University, 26, 141-146.

[4] Knuth, D. E. (1997). The art of computer programming (3rd ed.). Addison Wesley.

[5] Steele, Guy & Vigna, Sebastiano. (2021). Computationally easy, spectrally good multipliers for congruential

pseudorandom number generators. Software: Practice and Experience. 52. 10.1002/spe.3030.

[6] Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-

random number generator. ACM Trans. Model. Comput. Simul., 8, 3-30.

Proceedings of the 3rd International Conference on Mathematical Physics and Computational Simulation
DOI: 10.54254/2753-8818/106/2025.22936

44

