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Abstract: This paper conducts research centered on the integral problems involving 

trigonometric functions, with a focus on exploring the solution methods in the case of 

improper integrals. Firstly, it reviews the basic processing methods of definite integrals and 

improper integrals and introduces the commonly used techniques in solving such integrals, 

including the application of methods such as variable substitution, integration by parts, and 

"taking partial derivatives and then integrating". Subsequently, it introduces the definition 

and typical properties of the Dirichlet integral, providing theoretical support for the 

subsequent solution of specific problems. Through an in-depth analysis of three specific 

integral problems, it demonstrates how to transform complex integrals into known forms for 

solution. The research shows that the rational application of the ideas of function 

transformation and limits not only helps to simplify the calculation process but also 

effectively improves the accuracy and efficiency of problem-solving. The discussion in this 

paper has certain reference value for understanding the structural characteristics and solution 

paths of improper integrals involving trigonometric functions. 

Keywords: Improper integral, Dirichlet integral, Trigonometric function, Integral 

transformation. 

1. Introduction 

Regarding the problem of the convergence and divergence of the Dirichlet integral, a large number 

of research literatures have conducted in-depth discussions on this. For instance, in the wrok by Xu 

[1], the authors specifically study the convergence problem of this kind of improper Dirichlet integral 

when the denominator in the integral is in the form of 𝑥𝑝. Specifically, they consider the integral in 

the form of: 

∫
sin(𝑥)

𝑥𝑝
𝑑𝑥

∞

0

  (1) 

and prove that when the parameter satisfies 0 < 𝑝 < 2 , this integral is convergent. This result 

indicates that within this parameter range, although the integrand exhibits strong oscillatory behavior 

and singularity near the origin, due to the interaction between the oscillation and decay, the integral 

can still attain a finite value. Therefore, integrating this function has practical mathematical 

significance and research value. 
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In mathematical analysis, when dealing with integrals where the numerator contains trigonometric 

functions and the denominator contains powers of the independent variable, especially when the 

integration interval approaches a singular point (such as 0), one often encounters the dual challenges 

of function oscillation and singularity. Such integrals are widely found in fields such as Fourier 

analysis, quantum mechanics, signal processing, and vibration theory. The issues of their convergence 

and integrability are directly related to the theoretical solvability and computational feasibility of the 

relevant models. Therefore, in-depth research on such integrals has important theoretical and practical 

values. For example, Xu has used the value of the Dirichlet integral and combining with the Riemann-

Lebesgue lemma [2], to prove that the Fourier series corresponding to a periodic function converges 

at its piecewise smooth points. What is more, Young revealed some applications of the dirichlet 

integral to the theory of surfaces [3]. 

In particular, by using appropriate variable substitutions or limit analyses to transform such 

integrals into classical integral forms with well-defined known results (such as the integral of  

sin 𝑥 𝑥⁄ ), not only can the solution process be simplified, but it can also reveal the universal laws and 

essential structures underlying the complex integral forms. This idea of transformation reflects the 

strategy of "using simplicity to control complexity" in mathematical analysis and is one of the 

effective approaches to solving complex integral problems. Therefore, the research carried out around 

this idea not only helps to expand the scope of application of the theory of improper integrals but also 

provides a solid theoretical basis for analytical and numerical computations, which is of great 

significance for promoting the development of related fields. 

In this paper, the author will first introduce the basic concepts of integrals and improper integrals. 

Then, the work will discuss a commonly used method for dealing with improper integrals and briefly 

review the definition and properties of the Dirichlet integral. Specificly, the author relies of the result 

of the classical interval result ∫
sin 𝑥

𝑥

∞

0
𝑑𝑥 =

𝜋

2
, which is proved in Yu’s paper [4]. Finally, through the 

specific solutions of three typical integral problems, the author demonstrates how to transform 

integrals involving trigonometric functions into classical forms, thereby simplifying the calculation 

of their values. 

2. Method and theory 

2.1. Basic definitions 

This subsection aims to introduce some basic definitions in the realm of real analysis. For the 

Fundamental Theorem of Calculus, it is stated that 

∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) 
𝑏

𝑎

 (2) 

The basic formula of integration by parts: 

∫ 𝑢  𝑑v = uv − ∫ 𝑣  𝑑u  (3) 

In addition, one can also solve Definite Integrals with Parameters by Means of the First-order 

Derivative. The author shall first introduce the Leibniz integral rule. Let 𝑓(𝑥, 𝑦) and its partial 

derivative 𝜕𝑓(𝑥, 𝑦) 𝜕𝑦⁄  be continuous in the rectangular region 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑. Then, the 

function 

𝐼(𝑦) =  ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
𝑏

𝑎

 (4) 

has a continuous derivative with respect to 𝑦 in [𝑐, 𝑑], and the differentiation is exchanged as 
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𝐼′(𝑦) =  ∫
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦

𝑏

𝑎

𝑑𝑥, 𝑐 ≤ 𝑦 ≤ 𝑑 (5) 

This theorem reveals that under some given conditions, an integration operation can be 

interchanged with partial differentiation, allowing one to first compute the partial derivative and then 

perform the integration. It provides a new method that can be used in calculating improper integrals. 

2.2. Integration by part 

Chen (2009) proved that ∫ sin 𝑥 𝑥⁄
∞

0
𝑑𝑥  is convergent by applying integration by part [5]. It is worth 

taking a look at its method of transforming the original improper intergral into a new form using 

integration by parts. 

First of all, the expression can be transformed, so that the integration by part can be applied. In 

view of 
𝑑

𝑑𝑥
(− cos 𝑥) = sin 𝑥, the author can transform the equation into sin 𝑥 𝑑𝑥 = 𝑑(1 − cos 𝑥). 

Hence, 𝐼 = ∫
sin 𝑥

𝑥

∞

0
𝑑𝑥 = ∫

1

𝑥
⋅ 𝑑(1 − cos 𝑥)

∞

0
. 

Secondly, the author applies the integration by part. Let 𝑢 =
1

𝑥
 , 𝑑𝑣 = 𝑑(1 − cos 𝑥). It can be 

calculated that 𝑑𝑢 =
𝑑

𝑑𝑥

1

𝑥
𝑑𝑥 = −

1

𝑥2 𝑑𝑥 and 𝑣 = 1 − cos 𝑥. The author then uses the basic formula 

of integration by parts Eq(a) and gets: 

𝐼 = [
1 − cos 𝑥

𝑥
]

0

∞

+ ∫
1 − cos 𝑥

𝑥2

∞

0

𝑑𝑥 (6) 

The author then tries to get the result of 𝐴 = [
1−cos 𝑥

𝑥
]

0

∞

. The author first analyzes the limitation of 

1−cos 𝑥

𝑥
 given that 𝑥 → ∞ . Since −1 < cos 𝑥 < 1 , −2 < |1 − cos 𝑥| < 2 . Then, the author gets 

−
2

𝑥
≤

1−cos 𝑥

𝑥
≤

2

𝑥
. According to the Squeeze Theorem, since when 𝑥 → ∞ , −

2

𝑥
→ 0 and 

2

𝑥
→ 0 , 

the author gets lim
𝑥→∞

1−cos 𝑥

𝑥
= 0. 

The author then analyzes the limitation of 
1−cos 𝑥

𝑥
 given that 𝑥 → 0 . Since when 𝑥 → 0, the 

numerator 𝑥 → 0 and the denominator 1 − cos 𝑥 → 0, it belongs to the indeterminate form of 
0

0
. 

Therefore, the L'Hopital's Rule is needed to be applied. The author differentiates the numerator and 

the denominator respectively and obtains 
𝑑

𝑑𝑥
(1 − cos 𝑥) = sin 𝑥  , 

𝑑

𝑑𝑥
𝑥 = 1 . According to the 

L'Hopital's Rule, the author gets lim
𝑥→0

1−cos 𝑥

𝑥
= lim

𝑥→0

sin 𝑥

1
= 0. Then, it is calculated that 

𝐼 = 0 + ∫
1 − cos 𝑥

𝑥2

∞

0

𝑑𝑥 = ∫
1 − cos 𝑥

𝑥2

∞

0

𝑑𝑥 (7) 

2.3. Introduction to a special form of improper integral 

The author would like to introduce the Dirichlet integral. The basic form of Dirichlet integral, and the 

classic result of the integral is shown below: 

∫
sin 𝑥

𝑥

∞

0

𝑑𝑥 =
𝜋

2
  (8) 
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The result of this interval has been proved in many ways, such as Chen used the methods of real 

analysis [5], Bradley (2021) applied the fundamental theorems in complex analysis [6], and Wang 

(2014) showed some traditional ways to prove the result [7]. To simplify the notation, the function is 

also written as sinc(𝑥) =
sin 𝑥

𝑥
. There is a conclusion can be derived based on this result, which is 

shown as follows 

∫
sin(𝐴𝑥)

𝑥
𝑑𝑥 =

𝜋

2

∞

0

  (9) 

To prove the equation, let 𝑢 = 𝐴𝑥  then 𝑥 =
𝑥

𝐴
, 𝑑𝑥 =

𝑑𝑢

𝐴
. The integral will change into 

∫
sin(𝐴𝑥)

𝑥
𝑑𝑥 = ∫

sin 𝑢

𝑢
𝑑𝑢

∞

0

∞

0
=

𝜋

2
.  There is also a classical result about the integral of the square of 

the integral of sinc(𝑥), which is proved in Oliveria’s study [8]. 

∫ sinc2(𝑥) 𝑑𝑥 
∞

0

=
𝜋

2
  (10) 

3. Results and applications 

3.1. Solution to the integral 𝑰𝒙,𝒛 

Consider the integral [9]: 

𝐼𝑥,𝑧 = ∫
sin(𝑥𝑡) 𝑒−𝑧𝑡

𝑡

∞

0

𝑑𝑡 (11) 

To find this integral, the author first calculates the partial derivative of 𝐼𝑥,𝑧 with respect to x, i.e., 
𝜕

𝜕𝑥
𝐼𝑥,𝑧 =  ∫ cos(𝑥𝑡) 𝑒−𝑧𝑡𝑑𝑡

∞

0
. To proceed further, one can calculate it by applying integration by parts. 

Let 𝑢 = cos(𝑥𝑡) , 𝑑𝑣 =  𝑒−𝑧𝑡𝑑𝑡. It can be calculated that 𝑑𝑢 =
𝑑

𝑑𝑡
cos(𝑥𝑡) 𝑑𝑡 = −𝑥 sin 𝑥𝑡 𝑑𝑡 , and 

𝑣 =  ∫ 𝑑𝑣 = ∫  𝑒−𝑧𝑡𝑑𝑡 = −
1

𝑧
𝑒−𝑧𝑡. According to the basic formula of integration by parts Eq(a), Thus, 

the author gets: 

𝜕

𝜕𝑥
𝐼𝑥,𝑧 = [−

1

𝑧
cos(𝑥𝑡) 𝑒−𝑧𝑡]

0

∞

−
𝑥

𝑧
∫ sin(𝑥𝑡) 𝑒−𝑧𝑡𝑑𝑡

∞

0

= 𝐴 + 𝐵 (12) 

The first term is calculated as 

𝐴 = [−
1

𝑧
cos(𝑥𝑡) 𝑒−𝑧𝑡]

0

∞

= lim
𝑡→∞

[−
1

𝑧
cos(𝑥𝑡) 𝑒−𝑧𝑡] − lim

𝑡→0

[−
1

𝑧
cos(𝑥𝑡) 𝑒−𝑧𝑡] (13) 

Thus, 𝐴 = 0 − (−
1

𝑧
) =  

1

𝑧
. Likewise, to calculate the second term, one can apply the substitution 

method which yields 

𝐵 = −
𝑥

𝑧
∫ sin(𝑥𝑡) 𝑒−𝑧𝑡𝑑𝑡

∞

0

= −
𝑥

𝑧
∫ [sin(𝑥𝑡)] (−

1

𝑧
) [(−𝑧) 𝑒−𝑧𝑡𝑑𝑡]

∞

0
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= −
𝑥

𝑧
∫ [sin(𝑥𝑡)] (−

1

𝑧
)  𝑑𝑒−𝑧𝑡 =

𝑥

𝑧2
∫ sin(𝑥𝑡) 𝑑 𝑒−𝑧𝑡

∞

0

∞

0

(14) 

For further calculation, the author applies integration by parts. Let 𝑢 = sin(𝑥𝑡) , 𝑑𝑣 =  𝑑𝑒−𝑧𝑡. 

Then, the author gets 𝑑𝑢 =
𝑑

𝑑𝑡
sin(𝑥𝑡) = 𝑥𝑐𝑜𝑠(𝑥𝑡)𝑑𝑡, and 𝑣 =  ∫ 𝑑𝑣 = ∫  𝑑𝑒−𝑧𝑡 = 𝑒−𝑧𝑡. According 

to the basic formula of integration by parts Eq(a), Thus, it can be calculated that: 

𝐵 = [
𝑥

𝑧2
sin(𝑥𝑡) 𝑒−𝑧𝑡]

0

∞

−
𝑥2

𝑧2
∫ cos(𝑥𝑡)𝑒−𝑧𝑡 𝑑𝑡

∞

0

(15) 

Then the author evaluates a definite integral using limits: 

𝐵 =  lim
𝑡→∞

[
𝑥

𝑧2
sin(𝑥𝑡) 𝑒−𝑧𝑡] − lim

𝑡→0

[
𝑥

𝑧2
sin(𝑥𝑡) 𝑒−𝑧𝑡] −

𝑥2

𝑧2
∫ cos(𝑥𝑡)𝑒−𝑧𝑡 𝑑𝑡

∞

0

 

= 0 − 0 −
𝑥2

𝑧2
∫ cos(𝑥𝑡)𝑒−𝑧𝑡 𝑑𝑡

∞

0

= −
𝑥2

𝑧2
∫ cos(𝑥𝑡)𝑒−𝑧𝑡 𝑑𝑡

∞

0

(16) 

As a result of the simplification, the author obtains that:  

𝜕

𝜕𝑥
𝐼𝑥,𝑧 = 𝐴 + 𝐵 =

1

𝑧
−

𝑥2

𝑧2
∫ cos(𝑥𝑡)𝑒−𝑧𝑡 𝑑𝑡

∞

0

(17) 

Then the equation can be rewritten as: 

𝐹 = 𝑛 + 𝑎𝐹, (𝐹 =
𝜕

𝜕𝑥
𝐼𝑥,𝑧, 𝑛 =

1

𝑧
, 𝑎 = −

𝑥2

𝑧2
) (18) 

Isolating 𝐼 on one side, the author gets (1 − 𝑎)𝐹 = 𝑛. It is clear that 𝑎 ≠ 1 in this case. Hence, 

it can be traslated into 𝐹 =
𝑛

1−𝑎
. To get the answer, the author substitutes the values, then it can be 

calculated that: 

𝜕

𝜕𝑥
𝐼𝑥,𝑧 =

1
𝑧

1 +
𝑥2

𝑧2

=
𝑧

𝑥2 + 𝑧2
(19) 

Since integration and differentiation are inverse operations, the author integrates the above 

equation: 

𝐼𝑥,𝑧 = ∫
𝜕

𝜕𝑥
𝐼𝑥,𝑧

𝑥

0

𝑑𝑥 = 𝑧 ∫
𝑧

𝑥2 + 𝑧2

𝑥

0

𝑑𝑥 = 𝑧 ∫
1

𝑧
arctan (

𝑥

𝑧
)

𝑥

0

= ∫ arctan (
𝑥

𝑧
)

𝑥

0

(20) 

For the final step, the author applies the Fundamental Theorem of Calculus Eq. (2): 

𝐼𝑥,𝑧 = arctan (
𝑥

𝑧
) − arctan(0) = arctan (

𝑥

𝑧
) (21) 

3.2. Case of m=4 & n=2 

Consider the integral [10]: 
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𝐼 = ∫
sin4(𝑥)

𝑥2
𝑑𝑥

∞

0

(22) 

According to sin2 𝐴 + cos2 𝐴 = 1, the author gets: 

𝐼 = ∫
sin2(𝑥) ⋅ sin2(𝑥)

𝑥2
𝑑𝑥 =

∞

0

∫
sin2(𝑥)

𝑥2
𝑑𝑥

∞

0

− ∫
sin2(𝑥) cos2(𝑥)

𝑥2
𝑑𝑥

∞

0

(23) 

According to sin 2𝐴 = 2 sin 𝐴 cos 𝐴, the author gets: 

𝐼 = ∫
sin2(𝑥)

𝑥2
𝑑𝑥

∞

0

− ∫
1

4

sin2(2𝑥)

𝑥2
𝑑𝑥

∞

0

= ∫
sin2(𝑥)

𝑥2
𝑑𝑥

∞

0

− ∫
sin2(2𝑥)

(2𝑥)
2

𝑑𝑥
∞

0

(24) 

According to sinc(𝑥) =
sin(𝑥)

𝑥
, the author gets: 

𝐼 = ∫ sinc2(𝑥) 𝑑𝑥
∞

0

− ∫ sinc2(2𝑥) 𝑑𝑥
∞

0

(25) 

Let 𝑢 = 2𝑥 , then 𝑑𝑢 = 2𝑑𝑥 . The author gets 𝑑𝑥 =
𝑑𝑢

2
. Then, the author substitutes into the 

integral: 

𝐼 = ∫ sinc2(𝑥) 𝑑𝑥
∞

0

− ∫ sinc2(𝑢)
𝑑𝑢

2
= ∫ sinc2(𝑥) 𝑑𝑥

∞

0

−
1

2
∫ sinc2(𝑢) 𝑑𝑢

∞

0

∞

0

(26) 

Note that 𝑢 is just a substitution variable, and the limits of integration remain from 0 to ∞. 

Therefore, one can rewrite it in standard notation 𝐼 = ∫ sinc2(𝑥) 𝑑𝑥
∞

0
 −

1

2
∫ sinc2(𝑥) 𝑑𝑥

∞

0
. Then, 

according Eq. (3), the author gets: 

𝐼 =
1

2
∫ sinc2(𝑥) 𝑑𝑥 =

1

2
⋅

𝜋

2

∞

0

=
𝜋

4
(27) 

3.3. Case of m=2 & n=2 

Consider the integral [9]: 

𝐼 = ∫
sin2(𝑥)

𝑥2
𝑑𝑥

∞

0

(28) 

The author introduces the parameter 𝑡 in the trigonometric part of the integral. 

𝐼(𝑡) = ∫
sin2(𝑡𝑥)

𝑥2
𝑑𝑥

∞

0

(29) 

From the above equation, the author has 𝐼(0) = 0. For further calculation, the author differentiates 

with respect to 𝑡: 

𝐼′(𝑡) = ∫
1

𝑥2
⋅

𝑑

𝑑𝑡
[sin2(𝑡𝑥)] 𝑑𝑥

∞

0

= ∫
2 sin(𝑡𝑥) cos(𝑡𝑥)

𝑥
𝑑𝑥

∞

0

(30) 



Proceedings	of	CONF-MPCS	2025	Symposium:	Mastering	Optimization:	Strategies	for	Maximum	Efficiency
DOI:	10.54254/2753-8818/2025.CH22969

221

 

 

According to sin 2𝐴 = 2 sin 𝐴 cos 𝐴, the author gets 𝐼′(𝑡) = ∫
sin(2𝑡𝑥)

𝑥
𝑑𝑥

∞

0
. This integral is a 

standard result ∫
sin(𝐴𝑥)

𝑥
𝑑𝑥 =

𝜋

2

∞

0
 (𝐴 = 2𝑡) with 𝐼′(𝑡) =

𝜋

2
. Then, the author performs integration 

on the above equation 

𝐼(𝑡) = ∫ 𝐼′(𝑡)
𝑡

0

𝑑𝑡 + 𝐼(0) = ∫
𝜋

2

𝑡

0

𝑑𝑡 + 0 =
𝜋

2
∫ 1

𝑡

0

𝑑𝑡 + 0 =
𝜋

2
[𝑡]

0

t
=

𝜋

2
𝑡 (31) 

Finally, the author sets 𝑡 = 1 to get the original integral 𝐼 = 𝐼(1) =
𝜋

2
. 

4. Conclusion 

This paper systematically studies the integral problems involving trigonometric functions, especially 

the solution methods in the case of improper integrals. By reviewing the basic concepts of definite 

integrals and improper integrals, it introduces classical techniques such as variable substitution, 

integration by parts, and "taking partial derivatives and then integrating". Based on the Dirichlet 

integral theory, it analyzes the convergence characteristics under the interaction of oscillation and 

decay. Combining three specific typical integral problems, this paper demonstrates how to transform 

integrals with complex forms into classical integral forms with well-defined known results, thus 

effectively simplifying the calculation process and improving the solution efficiency. The research 

shows that the rational utilization of function transformation and the concept of limits is the key 

strategy for dealing with the problem that it is difficult to find the corresponding antiderivative in 

such integrals, making it impossible to use the conventional Newton-Leibniz method to solve the 

integral problem, which further reflects the idea of simplifying complexity. 

Although this paper has achieved certain results in theoretical discussion and case analysis, there 

is still room for improvement. For example, the treatment of improper integrals for more general 

trigonometric function integrals (such as more complex situations like adding parametric functions, 

in the complex number field, etc., which cannot be covered by the author currently) still needs further 

exploration. In addition, this paper mainly focuses on analytical methods and does not involve the 

role and precision control of numerical methods in such integrals. In the future, numerical analysis 

tools can be combined to conduct in-depth research on the numerical solvability and error estimation 

of different types of improper integrals. Looking ahead, further exploration of the practical 

applications of such integrals in physical modeling and engineering calculations, as well as their 

extended forms in Fourier analysis and high-order vibration systems, will provide more theoretical 

support and practical paths for the interdisciplinary integration of mathematics and engineering 

sciences. 
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