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Abstract: Differential equations have played a crucial role in modeling epidemics, 

significantly enhancing people’s understanding and prediction of infectious disease spread. 

This essay delves into the application of compartmental models, particularly the 

Susceptible-Infected-Recovered model as well as its variants, which employ ordinary 

differential equations to depict the dynamics of diseases within populations. By analyzing 

key parameters such as transmission rates, recovery rates, and immunity loss, these models 

can forecast the progression of epidemics and assess the effectiveness of various 

intervention strategies, including vaccination and quarantine. A pivotal aspect of these 

models is the basic reproduction number, which serves as a critical threshold for 

determining outbreak potential. The essay also examines advanced models that incorporate 

spatial and stochastic elements to enhance the realism of epidemic simulations. The 

practical applications of these models during the COVID-19 pandemic are highlighted, 

demonstrating their vital role in shaping public health policies and informing decision-

making processes. Despite challenges such as data limitations and behavioral variability, 

differential equations continue to be a fundamental tool in epidemiological research. They 

transform theoretical insights into actionable strategies, thereby contributing to effective 

disease control and prevention efforts. 

Keywords: Differential equations, Epidemics, Susceptible-Infected-Recovered model, Basic 

reproduction number. 

1. Introduction 

The mathematical modeling of epidemics has long been a cornerstone of public health planning, 

enabling scientists to predict disease spread, evaluate intervention strategies, and mitigate 

catastrophic outcomes. At the heart of this predictive power lie differential equations, dynamic tools 

that capture how populations transition between health states—such as susceptible, infected, and 

recovered—over time [1]. By quantifying rates of transmission, recovery, and immunity, these 

equations transform complex biological and social interactions into solvable frameworks, offering 

insights into the temporal evolution of outbreaks. One of the most iconic models, the Susceptible-

Infected-Recovered (SIR) model, pioneered by Kermack and McKendrick in 1927, uses a system of 

ordinary differential equations (ODEs) to describe how diseases like influenza or COVID-19 

propagate through populations. Extensions such as SEIR, which Victoria Chebotaeva, Anish 

Srinivasan, and Paula A. Vasquez introduce as a new Erlang-distributed SEIR model [2], adding an 

"Exposed" compartment, or SIS [3], accounting for reinfection, further refine predictions for 
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specific pathogens. Beyond ODEs, partial differential equations (PDEs) and stochastic models 

address spatial spread and randomness in smaller populations, respectively. 

These models do not merely simulate hypothetical scenarios; they directly inform real-world 

decisions, from vaccination campaigns to lockdown policies. For instance, during the COVID-19 

pandemic, differential equations underpinned estimates of the reproduction number (R0) and herd 

immunity thresholds, guiding global responses. However, they also face challenges, such as 

accounting for human behavior or incomplete data, reminding people that mathematical rigor must 

coexist with adaptability. Sabherwal Amarpreet Kaur, Sood Anju and Shah Mohd Asif wrote a 

review that delves into multiple critical domains essential for fostering sustainable health and well-

being. It integrates precision medicine, environmentally conscious healthcare solutions, digital 

health innovations, integrative wellness strategies, population health initiatives, worldwide health 

security measures, and evidence-based public health methodologies, offering a strategic vision for 

building a more robust healthcare system [4]. 

By bridging abstract theory and practical application, differential equations remain indispensable 

in humanity’s fight against infectious diseases. This essay explores their foundational role in 

epidemiology, illustrating how mathematics transforms uncertainty into actionable knowledge. 

2. Models and methods 

2.1. SIR model 

The seminal work of Kermack and McKendrick introduced the SIR model. Here, S (Susceptible) 

consists of healthy individuals who remain vulnerable to infection and may potentially acquire and 

spread the illness. The infected group (I) represents those currently carrying the pathogen who can 

actively pass it to others. The recovered category (R) includes people who have overcome the 

infection, having either developed lasting immunity or completed their isolation period until 

achieving full immunity. 

The Susceptible-Infected-Recovered (SIR) framework represents the fundamental structure for 

epidemic modeling, with several important variants distinguished by their immunity assumptions: 

The basic SI model describes infections without recovery (SI); the SIS model incorporates recovery 

but assumes no lasting immunity (SIS); while the SIRS model accounts for temporary immunity 

before returning to susceptibility (SIRS). These model classifications reflect the crucial 

epidemiological distinction between permanent, temporary, and absent immunity in disease 

transmission dynamics. 

The differential equations of the SIRS epidemic model are as follows: 

𝑑𝑆

𝑑𝑡
= −

𝛽

𝑁
𝑆𝐼 − 𝑏𝑆 + 𝑏𝑆 + 𝑏𝐼 + 𝑏𝑅 + 𝑣𝑅 (1) 

𝑑𝐼

𝑑𝑡
=

𝛽

𝑁
𝑆𝐼 − 𝛾𝐼 − 𝑏𝐼 (2) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝑏𝑅 − 𝑣𝑅 (3) 

where the initial conditions satisfy 𝑆(0)  >  0, 𝐼(0)  >  0, 𝑅(0)  ≥  0, and 𝑆(0)  +   𝐼(0)  +  𝑅(0)  =
 𝑁. The parameters are defined as follows: β indicates the average number of times an infected 

person has had appropriate contact. 
𝛽

𝑁
𝑆 represents the average number of appropriate contacts per 

infected individual that cause infection in a susceptible individual. 
𝛽

𝑁
𝑆𝐼 indicates the number of 

infections per infection resulted from all infected individuals. In addition, γ represents the recovery 
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rate, and 1/𝛾 represents the average length of immunity. 𝑣 represents rate of loss of immunity, and 

1/𝑣 represents average length of immunity. 𝑏 represents both birth rate and death rate. N represents 

total population size [5]. 

The dynamics of these compartments are described by a system of ordinary differential equations 

(ODEs): 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼,

𝑑𝑆

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (4) 

in which 𝛽 represents the transmission rate and 𝛾 indicates the recovery rate. 

2.2. Other epidemic models 

As for the SI epidemic model, it excludes births and deaths. Here are the equations: 

dS

dt
= −

β

N
SI,

dI

dt
=

β

N
SI (5) 

that 𝑆(0)  >  0 , 𝐼(0)  >  0 , and 𝑆(0)  +  𝐼(0)  =  𝑁 . Therefore, 𝑆(𝑡)  +  𝐼(𝑡)  =  𝑁  besides 

substitution 𝑆 with 𝑁 –  𝐼 . People can obtain that 𝐼 satisfies the relation 
dI

dt
= βI(1 −

I

N
). 

J. Demongeot, Q. Griette and P. Magal wrote an article which is focuses on parameter estimation 

techniques for the SI epidemic model. The authors first apply exponential curve fitting to analyze 

initial cumulative COVID-19 case data from China. Their approach enables early-stage epidemic 

parameter calculation during the outbreak's beginning phase. Subsequently, the study demonstrates 

parameter identifiability through mathematical proof. The Bernoulli-Verhulst empirical model is 

then employed for data fitting, yielding important parameter estimation conclusions. The final 

section develops computational methods for estimating time-varying transmission rates using daily 

discretized approximations [6]. 

As for SIS model, it does not include births and deaths which can be found the expression of it: 

dS

dt
= −

β

N
SI + γI,

𝑑𝐼

𝑑𝑡
=

𝛽

𝑁
𝑆𝐼 − 𝛾𝐼 (6) 

When the formula has the same features with SI model, the equations are given by 

dI

dt
= (β − γ)I [1 −

β

(β − γ)N
I] (7) 

In epidemiological modeling, the critical threshold ratio γ/β in the SIS framework is designated 

as the basic reproduction number (R0)  This dimensionless quantity represents the expected number 

of secondary cases generated by a single infection in a fully susceptible population, serving as a 

pivotal indicator for predicting outbreak potential (R₀ > 1) or extinction (R0< 1). In this model,  β =
λ𝑁, R0 is calculated by: 

𝑅𝑂 =
𝛽

𝛾
=

𝜆𝑁

𝛾
(8) 

Shi, Duan and Chen wrote an essay about the SIS model. This study introduces a novel 

susceptible-infected-susceptible (SIS) epidemiological model incorporating infectious vectors, 

designed to characterize disease transmission (such as malaria) mediated by infectious agents (e.g., 

mosquitoes) across diverse complex networks. The research systematically examines the model's 

dynamical properties, comparing its behavior on homogeneous networks with that on heterogeneous 



Proceedings	of	CONF-MPCS	2025	Symposium:	Mastering	Optimization:	Strategies	for	Maximum	Efficiency
DOI:	10.54254/2753-8818/2025.CH23001

203

 

 

scale-free networks, with particular emphasis on demonstrating the absence of an epidemic 

threshold in scale-free network configurations. Through comprehensive analytical derivations and 

numerical simulations, the study establishes that targeted immunization approaches prove 

particularly effective for this modified model in scale-free network environments. Importantly, the 

analysis reveals that node immunization requirements are influenced by dual transmission pathways: 

both human-to-human and vector-to-human infection routes. These findings demonstrate that the 

characteristic lack of a critical immunization threshold in such systems arises not merely from the 

degree distribution properties inherent to scale-free networks, but also fundamentally depends on 

the specific disease transmission mechanisms operative within the network [7]. 

As for SIR model, it excludes births and deaths, here are the equations: 

dS

dt
= −

β

N
SI (9) 

dI

dt
=

β

N
SI − γI = I (

β

N
S − γ) (10) 

dR

dt
= γI (11) 

that 𝑆(0)  >  0, 𝐼(0)  >  0 𝑎𝑛𝑑 𝑅(0)  ≥  0 , and 𝑆(0)  +   𝐼(0)  +  𝑅(0)  =  𝑁 . Therefore, 𝑆(𝑡)  +
  𝐼(𝑡)  +  𝑅(𝑡)  =  𝑁. Because R(t) can be calculated by both S(t) and I(t), it is enough to determine 

S and I: 

𝑑𝐼

𝑑𝑆
= −1 +

𝜆𝑁

𝛽𝑆
(12) 

𝐼(𝑡) = 𝑁 − 𝑅(0) − 𝑆(𝑡) +
𝛾𝑁

𝛽
𝑙𝑛

𝑆(𝑡)

𝑆(0)
(13) 

The SIR model dynamics show the susceptible population S(t) always decreases over time, with 

infections peaking when S(t) reaches the critical threshold γ/β. If the initial susceptible population 

S(0) exceeds this threshold (𝑆(0)  >  𝛾/𝛽), an epidemic occurs where infections first rise then fall; 

otherwise (S(0) ≤ γ/β), infections decline immediately without causing an outbreak. Since the total 

population is fixed, infections must eventually die out ( 𝐼(𝑡) → 0 ), leaving some susceptible 

individuals S(∞) who escape infection, determined by the final size equation: 

𝑆(∞) = 𝑁 − 𝑅(0) +
𝛾𝑁

𝛽
ln

𝑆(𝑡)

𝑆(0)
(14) 

The restricting value depends on primary conditions. However, it is always greater than 0. 

𝑆(∞) > 0. Here is the relative equation 

𝑅 =
𝛽𝑆(0)

𝛾𝑁
= 𝑅0𝑥∗ (15) 

𝑥∗  =  𝑆(0)/𝑁  is the ratio of susceptible people and 𝑅0 = 𝛽/𝛾 . The parameter 𝑅  sometimes 

represents to as the effective rate.  

Ian Cooper, Argha Mondal and Chris G. Antonopoulos wrote an essay about SIR model. This 

research paper examines the predictive capability of epidemiological modeling for the COVID-19 

pandemic, presenting a modified susceptible-infected-removed (SIR) framework that differs from 
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classical approaches in two key aspects: it neither assumes a fixed total population nor requires 

monotonically decreasing susceptible populations. Notably, the model accommodates periodic 

increases in susceptible individuals during infection surges - a crucial feature for modeling real-

world pandemic dynamics. 

The study conducts a comprehensive temporal analysis of disease progression across multiple 

geographical regions (China, South Korea, India, Australia, the United States, Italy, and Texas, 

USA), tracking critical transmission parameters through the first half of 2020. This period 

encompasses both pre-intervention phases and subsequent implementation of containment measures. 

The proposed SIR framework demonstrates superior predictive power compared to raw empirical 

data alone, particularly in forecasting disease spread patterns through September 2020 [8]. 

As for SIRS model, it excludes births and deaths. Here are the equations: 

dS

dt
= −

β

N
SI + vR (16) 

𝑑𝐼

𝑑𝑡
=

𝛽

𝑁
𝑆𝐼 − 𝛾𝐼 = 𝐼 (

𝛽

𝑁
𝑆 − 𝛾) (17) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝑣𝑅 (18) 

That  S(0)  >  0 , I(0)  >  0, R(0)  ≥  0 , and S(0)  +   I(0)  +  R(0)  =  N . Because R(t) is 

calculated by S(t) and I(t), it is enough to determine both S and I. Here are the equations about 𝑆 

and 𝐼: 

dS

dt
= −

β

N
SI + v(N − S − I),

dI

dt
= I (

β

N
S − γ) (19) 

Moreover, for a vaccination program to be effective, The proportion of immunization must make 

the remaining population (1 − p)N. At the start of an epidemic model R = R0 x ∗, that R0 = β/γ 

and x ∗= S(0)/N. At the beginning of the pandemic, S(0)  ≈ N. Therefore, if pN of  S(susceptible) 

in are vaccinated. These are the equations: S(0)  ≈ (1 − p)N  and R =  R0(1 − p) . If the 

government want to prevent the epidemic, R0(1 − p) < 1. An measurement for the least value of p 

can be calculated by solving R0(1 − p)  = 1 or p =
R0−1

R0
. 

Li Chun-Hsien, Tsai Chiung-Chiou  and Yang Suh-Yuh wrote an essay which is about SIRS 

model. This investigation examines disease transmission dynamics in complex heterogeneous 

networks using an extended SIRS (Susceptible, Infected, Recovered, Susceptible) epidemiological 

model incorporating vital dynamics (birth and death rates). The analysis reveals that the system's 

behavior is governed by a fundamental epidemiological threshold parameter. When this parameter 

falls below or equals unity, the disease-free equilibrium demonstrates global stability, ensuring 

pathogen elimination. Conversely, when exceeding this critical value, the disease-free state loses 

stability while a unique endemic equilibrium emerges with global asymptotic stability 

characteristics. 

The study employs comprehensive numerical simulations to validate these theoretical findings. 

Furthermore, the researchers explore the model's behavior within clustered scale-free network 

topologies, specifically investigating how modular community structures influence epidemic 

progression patterns. This extension provides valuable insights into the interplay between network 

architecture and disease persistence [9]. 
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Figure 1: The image shows two line-plots: the left one declines from ~35,000 to ~15,000 (labeled 

"4" and "3"), while the right one rises from ~0 to ~40,000 (labeled "1" and "2"). Numbers at the 

bottom ("2000, 4000, 6000") indicate scale, and "(h)" suggests a time unit [10] 

3. Experimental analysis 

The data provided in Figure 1 illustrates a numerical distribution with values ranging from 0 to 

35,000. The first segment shows a gradual decline from 35,000 to 0, followed by a smaller subset of 

values between 3,500 and 10,000 [10]. This distribution could represent various scenarios, such as 

population dynamics, resource allocation, or statistical measurements. Further analysis is needed to 

determine the context and significance of these values. 

This Figure 1 quantitatively demonstrates how the initial susceptible population size 

𝑆(0) fundamentally shapes epidemic progression, where under the constraint 𝑅(0) = 0  and 

constant population size 𝑁 = 𝑆(0) + 𝐼(0), reduced 𝑆(0) (implying increased initial infected cases 

I(0) accelerates outbreak dynamics, producing both a steeper epidemic curve and higher peak 

prevalence, as visually corroborated in Figure 1b. Conversely, larger initial susceptible populations 

delay onset and attenuate outbreak severity, with the inverse relationship between 𝑆(0)  and 

epidemic intensity emerging through two key mechanisms: (i) the immediate infectious pressure 

determined by 𝐼(0), and (ii) the susceptible pool available for subsequent transmission, collectively 

governing both the temporal progression and magnitude of the epidemic peak. Next, this graph 

examines the epidemic acceleration patterns derived from logistic and generalized logistic 

differential equation models across six representative nations. The analysis reveals distinct seasonal 

influenza patterns: (1) Northern Hemisphere countries (USA and Germany) exhibited single winter 

peaks; (2) Southern Hemisphere nations displayed varied patterns - Argentina with summer peaks, 

Australia primarily showing autumn peaks with minor winter activity in 2018, and South Africa 

demonstrating summer dominance with additional autumn activity in 2018; (3) China presented the 

most complex pattern, alternating between dual summer-winter peaks (2015, 2017) and single 

winter peaks in other years. Statistical validation through parameter testing yielded a T-statistic of -

0.236 (p=0.025), confirming the significance of these observed inter-country variations in epidemic 

acceleration timing and magnitude. 
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Figure 2: The SIR model with vital dynamics was solved for mortality rates μ = [0.0, 0.02, 0.04, 

006, 0.08], where the baseline case (μ=0.0) is represented by thick dashed curves [11] 

Finally, the SIR model with vital dynamics is studied [11]. As expected, both methods produced 

the same results. For the results shown at parameters 𝜇 = 0.0, 0.02, 0.04, 0.06 and 0.08, and β and γ 

= 0.5 and 0.2, it is found from Figure 2 that a minimum occurs at 𝑥(𝜏), and 𝑦(𝜏) remains non-zero 

as 𝜏 → ∞. This represents a disease that is endemic and stable. Newborns may provide more 

susceptible individuals, leading to a sustained epidemic. 

4. Conclusion 

In conclusion, this essay highlights the critical role of differential equations in modeling and 

understanding the dynamics of epidemics. By employing compartmental models such as the SIR 

(Susceptible-Infected-Recovered) model and its variations like SI, SIS, and SIRS, researchers can 

effectively describe the transmission and progression of infectious diseases within a population. 

These models, governed by parameters such as transmission rates, recovery rates, and immunity 

loss rates, provide valuable insights into the temporal evolution of outbreaks and help predict key 

epidemiological metrics like the basic reproduction number (R₀). The essay also underscores the 

practical applications of these mathematical models in informing public health policies and 

intervention strategies, as evidenced during the COVID-19 pandemic. By simulating various 

scenarios and evaluating the impact of measures such as vaccination and quarantine, differential 

equations enable policymakers to make informed decisions aimed at mitigating the effects of 

epidemics. Furthermore, the discussion on advanced models incorporating spatial heterogeneity, 

age structure, and stochasticity emphasizes the importance of refining these frameworks to better 

reflect real-world complexities. Despite challenges such as accounting for human behavior and 

incomplete data, the integration of mathematical rigor with adaptability remains essential in the 

ongoing fight against infectious diseases. Overall, the application of differential equations in 

epidemiology not only enhances people’s theoretical understanding of disease dynamics but also 

provides actionable knowledge crucial for effective public health planning and response. This essay 

demonstrates the indispensable role of mathematics in transforming uncertainty into strategic 

insights, ultimately contributing to the global effort to control and prevent epidemics.  
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