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Abstract: This paper investigates the issue of conflict resolution between spatiotemporal 

conflict airspace requirements in low-altitude airspace planning. Regarding to the complex 

constraints of this multi-objective optimization problem, the quadratic constraints in the 

problem are relaxed by linear approximation method and the mixed-integer linear multi-

objective programming model is established through absolute value linearization and 

multidimensional Boolean product linearization methods. Subsequently, specific scenarios 

are designed, and the user airspace application data is simulated. Using the solver to analyze 

the simulation data, and the results indicate that as the demand scale increases, the solving 

time increases exponentially, and the solving effectiveness gradually declines after exceeding 

a certain scale. Finally, through the analyzing of the linear relaxation method, combining with 

specific data, the deviation of the model from the actual problem is calculated. Due to the 

relatively small theoretical error, it is proven that this linearized model is applicable to solving 

the low-altitude airspace conflict resolution problem. 

Keywords: Linear approximation, Mixed-integer linear multi-objective programming, Low-

altitude airspace planning 

1. Introduction 

With the rapid development of drone and small aircraft technology, the low-altitude economy has 

gradually become a hot topic. The low-altitude economy is an economic form derived from the low-

altitude flight activities of civil manned or unmanned aircraft, encompassing aircraft research and 

development, manufacturing, commercial operations, and infrastructure construction.  

The rapid development of the low-altitude economy and the significant relaxation of regulations 

in low-altitude airspace have provided aircraft with greater operational space, while also posing 

significant challenges to the planning and regulation of low-altitude airspace. Airspace management 

not only involves technical details such as the flight paths and altitudes of aircraft but also requires 

consideration of multiple dimensions including safety, efficiency, and environmental protection. 

Low-altitude airspace planning encompasses multiple aspects: grid technology, remote sensing, 

communication and networking, aircraft route planning, and operational management [1]. This study 

primarily focuses on the construction of geofencing technology and airspace stratification technology 

within the airspace structure, specially the conflict resolution problem between spatiotemporal 

conflict airspace requirements. Although this technology segments the airspace and reduces its 

utilization efficiency, it offers unparalleled advantage of safety [2]. 

Proceedings of  CONF-MPCS 2025 Symposium: Leveraging EVs and Machine Learning for  Sustainable Energy Demand Management 
DOI:  10.54254/2753-8818/109/2025.GL23171 

© 2025 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

42 



Generally, aircraft users submit airspace usage requests to the control center, which include the 

horizontal position area, the altitude range of the airspace, and the time range for usage. When two 

airspace applications are in conflict simultaneously in terms of time, altitude, and horizontal range, it 

is considered an airspace conflict. Specifically, this situation occurs when there is an overlap in all 

three dimensions of the airspace or when the distances between the ranges are less than the safety 

intervals. 

Due to the large number of users, it is necessary to adjust conflicting user demands and optimize 

airspace resource allocation in order to maximize user needs and utilize airspace resources more 

effectively. The airspace applications in conflict are shown in Figure 1. 

 

Figure 1: Airspace applications are in conflict 

2. Literature review 

Since the 1940s, researchers have conducted extensive studies on various issues in the field of 

airspace planning, leading to a plethora of algorithms and models. Numerous scholars have focused 

on airspace conflict detection and resolution planning based on aircraft trajectories and spatial grid 

partitioning systems. 

Kuchar et al. [3] conducted a review of aircraft dynamic trajectory prediction, conflict detection, 

and resolution techniques since 2000, investigating 68 modeling methods for conflict detection and 

resolution. They classified and evaluated these methods based on the dimensions of state information, 

dynamic propagation methods, conflict detection thresholds, conflict resolution methods, 

maneuvering sizes and so on. 

Pallottino et al. [4] studied the issue of conflicts between aircrafts flying in shared airspace. They 

established mixed-integer linear programming models for two scenarios: one allowing only changes 

in speed and the other allowing only changes in heading angle, and employed solvers to address the 

problem. 

Ayuso et al. [5] proposed a hybrid 0-1 linear optimization model based on geometric 

transformations for airspace conflict detection and resolution. Knowing the initial coordinates, 

directional angles, and flight altitudes, conflict resolution is achieved by minimizing several objective 

functions (such as the variation in each dimension and the number of dimensions that changed) while 

enforcing a return to the original flight configuration in the absence of aircraft conflicts. 

Tang et al. [6] developed a conflict detection and resolution algorithm for small fixed-wing aircraft 

based on a Spatial Grid Partitioning System (SGPS). This algorithm determines whether two 

trajectories pass through the same grid space within an overlapping time window. They also proposed 

techniques based on time scheduling and vertical adjustment to achieve conflict resolution. 

Miao et al. [7] proposed a low-altitude flight conflict detection algorithm based on a multi-level 

grid spatiotemporal index. This algorithm transforms the traditional conflict computation based on 

trajectory traversal into a grid conflict state query within a distributed grid database. The algorithm 

first constructs a spatiotemporal coding model based on airspace, then uses grid coding to identify 

trajectories and no-fly zones, and subsequently establishes a multi-level grid spatiotemporal index 
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according to the table structure of the grid database. Finally, the algorithm designs an optimized query 

method to detect conflicts within the grid database. 

These studies, in conducting airspace conflict detection and resolution, not only involve 

adjustments to the horizontal and vertical dimensions of the airspace but also include planning for the 

aircraft's heading and speed. 

Due to the inherent non-linear nature of airspace conflict issues, it is difficult to establish a linear 

model, which increases the complexity of the solution. Some studies have linearized the non-linear 

problems to reduce the difficulty and directly applied solvers for resolution, while others have 

designed heuristic functions for solving. Tamas et al. [8] analyzed a lot of researches on the 

application of mixed-integer nonlinear optimization methods to air traffic management issues. They 

established a mixed-integer nonlinear model addressing airspace conflicts and resolution problems, 

and solved the model using a MINLP solver. They also examined the application of heuristic methods 

such as Branch and Bound, linearization methods, and neighborhood search in problem-solving. 

3. Mathematical programming model 

This study addresses the problem of airspace conflict detection and resolution by constructing a 

mixed-integer linear model. The conflict resolution is achieved through adjustments in the horizontal, 

vertical, and temporal dimensions. Different dimensions have different priorities, while minimizing 

adjustments to user applications and rejecting requests as little as possible. And solutions are obtained 

using a solver. 

3.1. Notations 

The symbols used in the model of this article are explained as follows: 

Table 1: Parameters definition 

Parameters Definition 

δ𝑑 The maximum value of the adjustment quantity in each dimension 

λ𝑑 Safety distances for each dimension 

𝑝𝑖 The centroid of the airspace application i 

p𝑟𝑖,𝑑 The radius of the airspace application i in each dimension 

bmi𝑛𝑑 The lower bound of airspace application in each dimension 

bma𝑥𝑑 The upper bound of airspace application in each dimension 

Table 2: Variables definition 

Variables Definition 

𝑥𝑖,𝑑 The spatiotemporal translation amount for airspace application i 

dplu𝑠𝑖,𝑑 
The positive deviation of the spatiotemporal adjustment amount for airspace 

application i 

dmin𝑖𝑖,𝑑 
The negative deviation of the spatiotemporal adjustment amount for airspace 

application i 

𝑦𝑖 The airspace application i has been adjusted or not 

𝑧𝑖 The airspace application i has been rejected or not 

tboo𝑙𝑖,𝑗 The airspace applications i and j conflict in the time dimension or not 

hboo𝑙𝑖,𝑗 The airspace applications i and j conflict in the altitude dimension or not 

tempboo𝑙𝑖,𝑗,𝑑 Boolean identifier 

T Total amount of space adjustment 

S Total amount of time adjustment 

Adjustnum Total number of adjustmented airspace applications 

rejectnum Total number of rejectmented airspace applications 
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3.2. Equations 

Based on the above symbol description, a mixed-integer nonlinear programming model is constructed 

for the low-altitude airspace planning problem as follows: 

 min  𝑝1 ∗ 𝑟ejectnum + p2 ∗ 𝐴djustnum + p3 ∗ 𝑇 + p4 ∗ 𝑆 (1) 

S.t. 

 𝑝𝑖,𝑑 + 𝑥𝑖,𝑑 > bmi𝑛𝑑 + p𝑟𝑖,𝑑 (2) 

 𝑝𝑖,𝑑 + 𝑥𝑖,𝑑 < bma𝑥𝑑 − p𝑟𝑖,𝑑 (3) 

 |𝑥𝑖,𝑑| < 𝛿𝑑 (4) 

(1 − 𝑏𝑜𝑜𝑙(|𝑝𝑖,1 + 𝑥𝑖,1 − 𝑝𝑗,1 − 𝑥𝑗,1| > 𝜆1 + 𝑝𝑟𝑖,1 + 𝑝𝑟𝑗,1)) ∗ 

 (1 − 𝑏𝑜𝑜𝑙(|𝑝𝑖,2 + 𝑥𝑖,2 − 𝑝𝑗,2 − 𝑥𝑗,2| > 𝜆2 + 𝑝𝑟𝑖,2 + 𝑝𝑟𝑗,2)) ∗ (5) 

(1 − 𝑏𝑜𝑜𝑙(𝑡𝑒𝑚𝑝 > 𝜆3 + 𝑝𝑟𝑖,3 + 𝑝𝑟𝑗,3)) = 0 

 |(𝑝𝑖,3 + 𝑥𝑖,3, 𝑝𝑖,4 + 𝑥𝑖,4) − (𝑝𝑗,3 + 𝑥𝑗,3, 𝑝𝑗,4 + 𝑥𝑗,4)| = temp (6) 

 𝑥𝑖.𝑑 − 𝑑𝑝𝑙𝑢𝑠𝑖.𝑑 + 𝑑𝑚𝑖𝑛𝑖𝑖.𝑑 = 0 (7) 

 𝑑р𝑙𝑢𝑠𝑖,𝑑 < 𝛿𝑑 + 𝑧𝑖 ∗ 𝑀 (8) 

 𝑑тіпі𝑖,𝑑 < 𝛿𝑑 + 𝑧𝑖 ∗ 𝑀 (9) 

 𝑑𝑝𝑙𝑢𝑠𝑖d < 𝑦𝑖 ∗ 𝑀 (10) 

 𝑑тіпі𝑖,𝑑 < 𝑦𝑖 ∗ 𝑀 (11) 

  

𝑇 = ∑  

𝑖∈𝑁

𝑑𝑝𝑙𝑢𝑠𝑖,1 + 𝑑𝑚𝑖𝑛𝑖𝑖,1 

  (12) 

  

𝑆 = ∑  

𝑑=2..4

𝑖∈𝑁

𝑑𝑝𝑙𝑢𝑠𝑖,𝑑 + 𝑑𝑚𝑖𝑛𝑖𝑖,𝑑 

  (13) 

Equation (2) and Equation (3) represent the marginal constraint. Equation (4) represents the 

constraint on the maximum adjustment amount. Equation (5) and Equation (6) indicates that there is 

no conflict between the airspace demands.  Equation (7), Equation (8), Equation (9), Equation (10), 

Equation (11), Equation (12) and Equation (13) represent the relationship between variables. 

4. Linearization 

Clearly, the model has multiple nonlinear constraints. Therefore, it is considered to linearize the 

model and transform it into a mixed-integer quadratic programming model. 

4.1. Multidimensional boolean product linearization 

Introducing infinitesimals and Boolean variables into the variables to achieve the decomposition of 

equation (5). 
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 |𝑝𝑖,2 + 𝑥𝑖,2 − 𝑝𝑗,2 − 𝑥𝑗,2| + 𝑀 ∗ ℎ𝑏𝑜𝑜𝑙𝑖,𝑗 > 𝜆2 + 𝑝𝑟𝑖,2 + 𝑝𝑟𝑗,2 (14) 

 |𝑝𝑖,1 + 𝑥𝑖,1 − 𝑝𝑗,1 − 𝑥𝑗,1| + 𝑀 ∗ 𝑡𝑏𝑜𝑜𝑙𝑖,𝑗 > 𝜆1 + 𝑝𝑟𝑖,1 + 𝑝𝑟𝑗,1 (15) 

 𝑡𝑒𝑚𝑝 > 𝜆1 + 𝑝𝑟𝑖,1 + 𝑝𝑟𝑗,1 + (𝑡𝑏𝑜𝑜𝑙𝑖,𝑗 − 1) ∗ 𝑀 + (ℎ𝑏𝑜𝑜𝑙𝑖,𝑗 − 1) ∗ 𝑀 (16) 

Proof. 

 |𝑝𝑖,2 + 𝑥𝑖,2 − 𝑝𝑗,2 − 𝑥𝑗,2| > 𝜆2 + 𝑝𝑟𝑖,2 + 𝑝𝑟𝑗,2 ⇒ ℎ𝑏𝑜𝑜𝑙𝑖,𝑗 = {0,1} (17) 

 |𝑝𝑖,2 + 𝑥𝑖,2 − 𝑝𝑗,2 − 𝑥𝑗,2| < 𝜆2 + 𝑝𝑟𝑖,2 + 𝑝𝑟𝑗,2 ⇒ ℎ𝑏𝑜𝑜𝑙𝑖,𝑗 = 1 (18) 

 𝑚𝑖𝑛ℎ𝑏𝑜𝑜𝑙𝑖,𝑗&&|𝑝𝑖,2 + 𝑥𝑖,2 − 𝑝𝑗,2 − 𝑥𝑗,2| > 𝜆2 + p𝑟𝑖,2 + p𝑟𝑗,2 ⇒ ℎboo𝑙𝑖,𝑗 = 0 (19) 

 |𝑝𝑖,1 + 𝑥𝑖,1 − 𝑝𝑗,1 − 𝑥𝑗,1| > 𝜆1 + 𝑝𝑟𝑖,1 + 𝑝𝑟𝑗,1 ⇒ 𝑡𝑏𝑜𝑜𝑙𝑖,𝑗 = {0,1} (20) 

 |𝑝𝑖,1 + 𝑥𝑖,1 − 𝑝𝑗,1 − 𝑥𝑗,1| < 𝜆1 + 𝑝𝑟𝑖,1 + 𝑝𝑟𝑗,1 ⇒ 𝑡𝑏𝑜𝑜𝑙𝑖,𝑗 = 1 (21) 

 𝑚𝑖𝑛𝑡𝑏𝑜𝑜𝑙𝑖,𝑗&&|𝑝𝑖,1 + 𝑥𝑖,1 − 𝑝𝑗,1 − 𝑥𝑗,1| > 𝜆1 + 𝑝𝑟𝑖,1 + 𝑝𝑟𝑗,1 ⇒ 𝑡𝑏𝑜𝑜𝑙𝑖,𝑗 = 0 (22) 

if 𝑡𝑏𝑜𝑜𝑙𝑖,𝑗 = 0  or ℎ𝑏𝑜𝑜𝑙𝑖,𝑗 = 0 , then |𝑝𝑖,1 + 𝑥𝑖,1 − 𝑝𝑗,1 − 𝑥𝑗,1| > λ1 + 𝑝𝑟𝑖,1 + 𝑝𝑟𝑗,1 − 𝑀 .if 

𝑡𝑏𝑜𝑜𝑙𝑖,𝑗 = 1 and ℎ𝑏𝑜𝑜𝑙𝑖,𝑗 = 1, then |𝑝𝑖,1 + 𝑥𝑖,1 − 𝑝𝑗,1 − 𝑥𝑗,1| > λ1 + 𝑝𝑟𝑖,1 + 𝑝𝑟𝑗,1. 

This method allows for the decomposition of equation (5) without altering the meaning of the 

constraints in it. 

4.2. Quadratic function linearization 

The linearization of the distance (squared term) between two points can be achieved by introducing 

an intermediate variable, which can transform the point information of that distance into interval 

information. Although this may introduce some bias in the precise solution of the model, it allows for 

the linearization of the constraints, effectively reducing the problem space.Sentence (6) can be 

linearized in this way. 

 𝑡𝑒𝑚𝑝2 = (𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3)
2

+ (𝑝𝑖,4 + 𝑥𝑖,4 − 𝑝𝑗,4 + 𝑥𝑗,4)
2
 (23) 

𝑡𝑒𝑚𝑝2 > 2 ∗ 𝑚𝑖𝑛(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3|) ∗ |𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3| 

 −𝑚𝑖𝑛(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3|)2 + 2 ∗ 𝑚𝑖𝑛(|𝑝𝑖,4 + 𝑥𝑖,4 − 𝑝𝑗,4 + 𝑥𝑗,4|) (24) 

∗ |𝑝𝑖,4 + 𝑥𝑖,4 − 𝑝𝑗,4 + 𝑥𝑗,4| − 𝑚𝑖𝑛(|𝑝𝑖,4 + 𝑥𝑖,4 − 𝑝𝑗,4 + 𝑥𝑗,4|)2 

𝑡𝑒𝑚𝑝2 > 2 ∗ 𝑚𝑎𝑥(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3|) ∗ |𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3| 

 −𝑚𝑎𝑥(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3|)2 + 2 ∗ 𝑚𝑎𝑥(|𝑝𝑖,4 + 𝑥𝑖,4 − 𝑝𝑗,4 + 𝑥𝑗,4|) (25) 

∗ |𝑝𝑖,4 + 𝑥𝑖,4 − 𝑝𝑗,4 + 𝑥𝑗,4| − 𝑚𝑎𝑥(|𝑝𝑖,4 + 𝑥𝑖,4 − 𝑝𝑗,4 + 𝑥𝑗,4|)2 

Proof. 

If 𝑐 ∈ [𝑎, 𝑏], then 𝑐2 > 𝑎2 + 2𝑎 ∗ (𝑐 − 𝑎) = 2𝑎𝑐 − 𝑎2, 𝑏2 > 𝑐2 + 2𝑐 ∗ (𝑏 − 𝑐) = 2𝑏𝑐 − 𝑐2. 

Since the constraint on 𝑡𝑒𝑚𝑝 is greater than a certain value, 𝑡𝑒𝑚𝑝 can be replaced by the right-

hand side of the equation (18) and equation (19). 

Obviously, max(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 − 𝑥𝑗,3|) = |𝑝𝑖,3 − 𝑝𝑗,3| − 2 ∗ δ3 , min(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 −

𝑥𝑗,3|) = |𝑝𝑖,3 − 𝑝𝑗,3| + 2 ∗ δ3 , max(|𝑝𝑖,4 + 𝑥𝑖,4 − 𝑝𝑗,4 − 𝑥𝑗,4|) = |𝑝𝑖,4 − 𝑝𝑗,4| − 2 ∗ δ4 , min(|𝑝𝑖,4 +

𝑥𝑖,4 − 𝑝𝑗,4 − 𝑥𝑗,4|) = |𝑝𝑖,4 − 𝑝𝑗,4| + 2 ∗ δ4. 
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4.3. Absolute value linearization 

For absolute value constraints, they can be implemented by adding a big M and Boolean variables to 

the model. 

 𝑡𝑒𝑚𝑝𝑏𝑜𝑜𝑙𝑖,𝑗,𝑑 ∗ 𝑀 + 𝑝𝑖,𝑑 + 𝑥𝑖,𝑑 − 𝑝𝑗,𝑑 − 𝑥𝑗,𝑑 > 0 (26) 

 𝑚𝑖𝑛𝑡𝑒𝑚𝑝𝑏𝑜𝑜𝑙𝑖,𝑗,𝑑 (27) 

Add 𝑡𝑒𝑚𝑝𝑏𝑜𝑜𝑙 ∗  𝑀  to the right side of the inequalities, and in this way, the absolute value 

constraints will be linearized. 

4.4. Auxiliary variable constraints 

After linearization, the objective can be represented as 𝑝1 ∗ 𝑟𝑒𝑗𝑒𝑐𝑡𝑛𝑢𝑚 + 𝑝2 ∗ 𝐴𝑑𝑗𝑢𝑠𝑡𝑛𝑢𝑚 + 𝑝3 ∗
𝑇 + 𝑝4 ∗ 𝑆 + 𝑡𝑒𝑚𝑝𝑏𝑜𝑜𝑙𝑖,𝑗,𝑑 + 𝑑𝑝𝑙𝑢𝑠𝑖,𝑑 + 𝑑𝑚𝑖𝑛𝑖𝑖,𝑑. 

The Boolean variables introduced are defined in relation to two objects, and the relationship 

between these two is relative; it can be described using (𝑖, 𝑗) as well as (𝑗, 𝑖). Based on the above 

characteristics, for each Boolean variable, add 𝑡𝑒𝑚𝑝𝑏𝑜𝑜𝑙𝑖,𝑗,𝑑 + 𝑡𝑒𝑚𝑝𝑏𝑜𝑜𝑙𝑗,𝑖,𝑑 = 1 , 𝑡𝑏𝑜𝑜𝑙𝑖,𝑗 +

𝑡𝑏𝑜𝑜𝑙𝑗,𝑖 = 1 and ℎ𝑏𝑜𝑜𝑙𝑖,𝑗 + ℎ𝑏𝑜𝑜𝑙𝑗,𝑖 = 1. In this way, the sum of these Boolean variables can be 

effectively restricted to a fixed value without affecting the objective function. 

Through the above processing methods, the original nonlinear model can be linearized, and the 

linearized model can be directly incorporated into the processor for solving. 

5. Numerical experiments and results 

The experiment was implemented using CPLEX 12.9 Studio, and all experiments were run on a 

computer with an AMD Ryzen Threadripper PRO 5975WX 32-Cores 3.60 GHz processor, 32.0 GB 

(31.8 GB available) of memory, and the operating system Windows 10. 

The data is described in Table 3. 

Table 3: Rules to format sections 

 𝑏𝑚𝑖𝑛3(4) 𝑏𝑚𝑖𝑛2 𝑏𝑚𝑖𝑛1 𝑏𝑚𝑎𝑥3(4) 𝑏𝑚𝑎𝑥2 𝑏𝑚𝑎𝑥1 

 0 30 0 1000 150 24 

 𝛿3(4) 𝛿2 𝛿1 𝜆3(4) 𝜆2 𝜆1 

 10 1.5 0.5 10 3 0.5 

 𝑝𝑟𝑖,3(4) 𝑝𝑟𝑖,2 𝑝𝑟𝑖,1 𝑝𝑖,3(4) 𝑝𝑖,2 𝑝𝑖,1 

 100 15 3 𝑈[0 − 1000] 𝑈[30 − 150] 𝑈[0 − 24] 
 

The experiment employs nine datasets with different demand quantities.The results are shown in 

Table 4. 

Table 4: Rules to format sections 

Target quantity Opt sol or not Time(s) Gap 

10 Yes 0.03 0 

20 Yes 0.06 0 

30 Yes 0.19 0 

40 Yes 0.73 0 
50 Yes 1.64 0 

60 Yes 5.39 0 
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70 No 60.33 45.77% 

80 No 603.11 41.42% 

100 No 8514.50 90.81% 

 

As shown in Figure 2, due to the rapid increase in computational complexity of the problem with 

the growing number of demands, the solver's performance tends to deteriorate when the scale is larger. 

The time required to solve the problem increases exponentially with the size of the problem. When 

the problem size exceeds 60, the solver is unable to obtain the optimal solution within an acceptable 

time period. Moreover, as the problem size increases, the gap value of the feasible solutions obtained 

by the solver becomes larger. 

 

Figure 2: Line graph of experimental results 

6. Conclusion  

According to the linear estimation of the quadratic term: if 𝑐 ∈ [𝑎, 𝑏], then 𝑐2 > 𝑎2 + 2𝑎 ∗ (𝑐 − 𝑎) =
2𝑎𝑐 − 𝑎2 , 𝑏2 > 𝑐2 + 2𝑐 ∗ (𝑏 − 𝑐) = 2𝑏𝑐 − 𝑐2 . The maximum degree of relaxation of this 

linearization method for the problem is
(𝑎−𝑏)2

(𝑎+𝑏)2. For this question, the degree of relaxation is determined 

by the maximun and minimum distances between the two airspace demands. The error between the 

optimal solution of this linearization method and the optimal solution of the actual problem will also 

be controlled within this maximum relaxation level. 

Specifically, for this problem, when max(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3|) < (λ3 + 𝑝𝑟𝑖,3 + 𝑝𝑟𝑗,3), the 

conflict cannot be resolved, and the relaxation of this constraint has no effect on the problem. When 

max(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3|) > (λ3 + 𝑝𝑟𝑖,3 + 𝑝𝑟𝑗,3) , min(|𝑝𝑖,3 + 𝑥𝑖,3 − 𝑝𝑗,3 + 𝑥𝑗,3|) > (λ3 +

𝑝𝑟𝑖,3 + 𝑝𝑟𝑗,3 − 4√2δ3), the degree of relaxation 
(𝑎−𝑏)2

(𝑎+𝑏)2 will larger than
(4√2δ3)

2

(2(λ3+𝑝𝑟𝑖,3+𝑝𝑟𝑗,3)−4√2δ3)
2. As 

δ3 = 10 and 𝑝𝑟𝑖,3 = 100, the small degree of relaxation has little impact on the problem. 

In summary, the model proposed in this paper can be applied to the resolution of such problems. 

However, for large-scale problems, the solver's solving capability is not enough, necessitating more 

efficient algorithms. 
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Table 4: (continued). 
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