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Abstract: GCaMP is a genetically encoded calcium indicator that is most widely used to ob-
serve the activities of populations of as many as thousands of neurons simultaneously using
modern fluorescence imaging techniques. GCaMP is widely used to monitor neural activity
in living animals. For example, researchers can use GCaMP to observe calcium transients in
neurons, which are proxies for action potentials and synaptic activity.(GCaMP - an Overview
| ScienceDirect Topics, 2015). However, calcium imaging itself has several limitations. First,
the calcium imaging has a poor signal to noise ratio(SNR) that makes the imaging diffi-
cult to detect dynamic signal and subtle fluctuations. Second, the fluorescence of GCaMP is
slower than the action potentials from neuron activities especially in quick succession. The
third issue is that there are millions of neurons that researchers investigated, but each neuron
presents different activity and relation. Therefore, accurately targeting a specific group of neu-
rons that perform similar tasks is challenging in the experiment. Aimed at these challenges,
four successive methods including High pass filter, Gaussian Mixed Model, correlation ma-
trix, and devolution were used to improve the analysis of neuron activity. By using these
methods to analyze the data set from two GCaMP6 (a particular version of GCaMP) fluo-
rescence recording data sets containing the time series traces of hundreds of neurons in the
mouse primary visual cortex (Vl) residing within a three-dimensional volume approximately
800µm × 800µm × 100µm in size. The results from the data analysis showed that the fil-
tering effect of FIR high pass filter is the most significant because it significantly enhance
the SNR and reduce noise. Through Gaussian Mixed Model and correlation coefficient, it
clearly presents the connectivity of each neuron in a 233 times 233 matrix R and indicates the
distribution of neuron activities by fitting into the Gaussian curve. The deconvolution success-
fully infer potential spikes. These methods efficiently enhance the noise reduction, network
connectivity and temporal resolution of the analysis of imaging.

Keywords: GCaMP, filtering, High-Pass Filter, Gaussian Mixed Model, Correlation coeffi-
cient, Deconvolution

1. Introduction

The indicator consists of three key components: Green Fluorescent Protein (GFP), Calmodulin (CaM),
and the M13 peptide. When calcium ions bind to the calmodulin, the protein undergoes a confor-
mational change that increases the fluorescence of GFP, allowing researchers to visualize calcium
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activity. As GCaMP is now a very popular genetic indicator that could be used to track different
cell’s activity through the fluorescence triggered by the calcium pump in the cell. There are large
amounts of paper related to methods of analyzing the calcium imaging. For instance, some paper ex-
plore the software used to analyze the calcium data optimally and consistently across different groups.
They addressed this unmet need by incorporating recent software solutions, namely NoRMCorre and
CaImAn, for motion correction, segmentation, signal extraction, and deconvolution of calcium imag-
ing data into an open-source (Cantu et al., 2020). However, researchers might need to get a more
accurate and conclusive result from the imaging. There are several ways to achieve that, for instance,
the development of fluorometric calcium sensors, new approaches for targeted labeling with these
sensors and the implementation of powerful imaging techniques, especially two-photon microscopy.
(Rochefort et al., 2008). What we did is using succession of methods from primary processing of data
set to the final spike inference to get a more accurate result.

2. Method

It’s a research of the methods of optimizing data analysis of GCaMP calcium imaging. For setting up
all of the methods Matlab should be installed for programming the data. And the data set should be
prepared for analysis. The data we found is from two GCaMP6 (a particular version of GCaMP) fluo-
rescence recording data sets containing the time series traces of hundreds of neurons in the mouse pri-
mary visual cortex (Vl) residing within a three-dimensional volume approximately 800µm× 800µm
×100µm in size. For every neuron n , the GCaMP fluorescence recording sample at each time point
m is given as a relative change in fluorescence with respect to a baseline fluorescence level.Let N be
the total number of neurons in the aforementioned three-dimensional volume field-of-view and M be
the total number of time sample points. Each data file contains three variables: FR, allLoc,data.

∆F

F0

[m] =
F [m]− F0

F0

(1)

2.1. High pass filter

To build a high pass filter, we need to first set up a N∗M matrix . Then, applying Fourier transform
on every neuron and compute the average Fourier magnitude. Eventually, using the plot method to
visualize the average Fourier magnitude spectrum. Now, setting up the FIR high pass filter with a
specific order L = 50 and cutoff frequency of ω = 0.0001. In the frequency domain, the ideal high-
pass filter is defined, for some cutoff frequency ωc, as follows:

Hideal
(
eiω

)
=

{
0, if ω ≤ ωc

1, otherwise
(2)

Filter each neuron by the FIR high pass filter and choose one of the neurons to plot. Now, to
construct a more ideal high pass filter, the order of the filter is halved and the sin function was used
to get an ideal cutoff frequency. In addition, it’s optional to use Hanning Window to continue to
reduce the side lobe effect and noise to improve the SNR . Then, plotting the coefficient h⌉ of the
ideal high pass filter.Implement the approximately ideal high-pass filter in the time domain for some
large L. Filter the raw ∆F data using the filter taps in the time domain using convolution. At the end,
comparing two filtered data from one neuron to determine whether it’s efficient to filter the noise.
Trying different types of the high pass filters such as Butterworth filter, Chebyshev filter. It gives the
researcher more possibilities to find out the most efficient high pass filter to reduce the noise in the
calcium imaging.
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2.2. Gaussian Mixed Model

Before fitting the Gaussian Mixture Model, you must first apply a high-pass filter to remove low-
frequency noise and extract the relevant neural signal. Initializes an array of constructs to store the
Gaussian mixture model for each neuron. The result of this preprocessing is the high-pass-filtered
signal, denoted as yn. The next step is to fit a two-component GMM to the data. This will model the
data as a mixture of two Gaussian distributions, representing the baseline state N(µn0, σ2n0) and the
excited state N(µn1, σ2n1) of neuronal activity. The probability density function of the GMM fit is
plotted. The GMM defines the probability density function fn(x) of the high-pass-filtered data as a
mixture of these two Gaussian distributions:

fn(x) = ω0fN(µn0,σ2
n0)

(x) + ω1fN(µn1,σ2
n1)

(x) (3)

For each neuron n , we fit a two-component GMM to the high-pass-filtered data using the Expectation-
Maximization (EM) algorithm, which iteratively estimates the model parameters that best describe the
data as a combination of two Gaussian distributions. Analyze the fitted parameters to differentiate be-
tween the baseline and excited neural activity states including the means ( µn0, µn1 ), the variances
(σ2n0, σ2n1), and the mixing coefficients (ω0, ω1). The image instructs to use Python or MATLAB to
fit the two-component GMM to yn. This involves using the expectation-maximization (EM) algorithm
or other optimization methods built into libraries like scikit-learn (Python) or fitgmdist (MATLAB)
to find the optimal values for µn0, µn1, σn0, σn1, ω0, ω1.

2.3. Correlation Coefficient Heat Map

Before calculating the correlation coefficients, the fluorescence time-series data for each neuron must
be standardized. Standardization ensures that differences in the scale of fluorescence signals do not
bias the correlation calculations. Each neuron’s time series is transformed into a z-score representa-
tion, normalizing it so that the data has a mean of zero and a standard deviation of one.

zi =
xi − µi

σi

(4)

This step ensures that all neurons are on the same scale before calculating correlation values.
Once the data is standardized, we calculate the pairwise Pearson correlation coefficients between
the time-series data of every pair of neurons. The Pearson correlation coefficient measures the linear
relationship between two neurons’ activities. It ranges from -1 to 1 , the Pearson correlation coefficient
for two neurons i and j is calculated as:

Rij =

∑T
t=1 (zi,t − z̄i) (zj,t − z̄j)√∑T

t=1 (zi,t − zi)
2
√∑T

t=1 (zj,t − zj)
2

(5)

The matrix R is symmetric, with diagonal elements Rii = 1, representing the self-correlation
of each neuron. To gain insight into the connectivity patterns, we visualize the correlation matrix.
Plotting the matrix as a heatmap allows for a quick assessment of how neurons interact with each
other. In the heatmap. The resulting correlation matrix provides insights into the functional connec-
tivity within the neural population. Highly correlated neurons might belong to the same network or
functional group, suggesting cooperative activity. To perform further network analysis, metrics such
as degree centrality, betweenness centrality, and clustering coefficients can be derived from the corre-
lation matrix.
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2.4. Deconvolution

The observed GCaMP fluorescence trace y is modeled as a convolution of the underlying spike train
s with the calcium kernel c , followed by the addition of noise:

y(t) = c(t) ∗ s(t) + ϵ(t) (6)

s(t) : the unobserved spike train (discrete events corresponding to neuronal spikes).
c(t) : the calcium kernel, which describes the response of the calcium indicator to a spike, usually

characterized by a rapid rise and slow decay.
ϵ(t) : added observational noise.
* : denotes the convolution operation.
The calcium indicator GCaMP has a temporal resolution in the range of hundreds of milliseconds,

which is significantly slower than the millisecond-scale duration of individual spikes. As a result, the
observed fluorescence signal lacks the temporal precision to directly resolve the timing of neuronal
spikes. To overcome this limitation, deconvolution methods are applied to estimate the underlying
spike train s(t) from the convolved fluorescence signal y(t). Before calling the deconvolution func-
tion, it’s important to hypothesize all the raw data is from filtered data. To recover the underlying spike
train s , the OASIS (Online Active Set method to Infer Spikes) deconvolution algorithm is applied.
OASIS first estimates the GCaMP kernel, which represents how calcium levels rise and fall following
a spike. The kernel is essentially the shape of the calcium response to a single action potential. The
deconvolution process involves reversing the convolution of the spike train and the calcium dynamics.
OASIS attempts to ”undo” the smoothing effect of the calcium transients by estimating when spikes
occurred based on the observed calcium signal.The algorithm identifies the most likely times when
spikes occurred by finding points in the observed fluorescence where the deconvolved signal suggests
that a spike must have happened. The average firing rate is calculated by dividing the total number
of spikes by the total recording time, which is determined by dividing the number of time points M
by the frame rate FR (frames per second). Finally, it creates a figure with three subplots The raw
filtered calcium signal for that neuron, the denoised calcium signal (c) after OASIS deconvolution,
the inferred spike train (s), represented as vertical lines (spikes) over time. This provides a visual
comparison between the raw data, the denoised signal, and the inferred spikes.

3. Result

3.1. High-Pass Filtering

3.1.1. Determining the Cutoff Frequency

After applying the high-pass filter, significant noise reduction was observed in the calcium imaging
data. The Fourier magnitude spectrum revealed that low-frequency components were effectively at-
tenuated, preserving higher-frequency components associated with neural activity. Specifically, the
cutoff frequency was determined to be 0.001 Hz based on the Fourier spectrum in figure 1.
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Figure 1: Average Fourier Magnitude Spectrum of the signal, displaying frequency (Hz) on the x-axis
and the average magnitude on the y-axis, scaled by 105. A significant peak is observed at very low
frequencies near 0 Hz, with a magnitude of approximately 55,779.9, as highlighted in the plot. The
remainder of the spectrum shows relatively low magnitudes across higher frequencies, indicating that
the signal contains most of its power at near-zero frequency components.

3.1.2. High-Pass Filter Coefficients

The coefficients of the high-pass filter were calculated using the inverse discrete-time Fourier trans-
form (IDTFT) of the ideal frequency response. Figure 2 presents the filter coefficients for FIR filter.
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Figure 2: Coefficient distribution of a high-pass filter. The plot shows the filter coefficients h[n], with
the x-axis representing the index n and the y-axis representing the coefficient magnitude. A signifi-
cant peak occurs at n=0 with a coefficient value of approximately 0.999, while all other coefficients
remain close to zero. This illustrates the filter’s sharp response, primarily allowing high-frequency
components to pass through while attenuating lower frequencies.

3.1.3. Filter Implementation

We implemented several types of high-pass filters to compare their performance. The signal-to-noise
ratio (SNR) was improved after applying the filters, with the FIR filter achieving an SNR of 26.11,
while the Butterworth and Chebyshev filters yielded SNRs of -5.96, -7.89 respectively (Table 1).
Among these, the FIR filter provided the best noise attenuation with minimal signal distortion.

Table 1: Comparison of Signal-to-Noise Ratio (SNR) for Different Filter Types

Filter Type SNR (dB)

FIR Filter 26.11
Butterworth -5.96
Chebyshev -7.89

Figure 3 shows a comparison of the calcium traces for a representative neuron before and after
filtering (FIR filter).
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Figure 3: Comparison of raw and filtered data. The top plot illustrates the raw data signal, which
exhibits considerable noise and fluctuations throughout the entire duration. The bottom plot shows
the same signal after filtering, with noticeable reduction in noise and smoother overall behavior, while
preserving key features of the original signal. This demonstrates the effectiveness of the filtering
process in removing unwanted noise from the data.

3.2. Gaussian Mixture Model (GMM)

Given the large dataset consisting of 233 neurons, it is impractical to present the results for each
neuron individually. Therefore, Neuron 29 was selected as a representative example to demonstrate
the application of the Gaussian Mixture Model (GMM) on the calcium imaging data.

After applying the high-pass filter, the GMM with two components was fitted to the calcium
imaging data from Neuron 29 ( Figure 4) . The model aimed to differentiate between baseline and
excited neural states based on the calcium signal dynamics.

For Neuron 29, the GMM fitting results are summarized in Table 2. The model indicated that
74.52% of the data belonged to the excited state and 25.48% to the baseline state.

The baseline state for Neuron 29 had a mean of 47.9129 and a standard deviation of 30.9359,
whereas the excited state exhibited a mean of 9.6364 and a standard deviation of 11.2521. The mixing
weights, which represent the proportion of data points associated with each state, were 0.2548 for the
baseline state and 0.7452 for the excited state.

Table 2: Statistical Characteristics of Baseline and Excited States

Component Mean (µ) Standard Deviation Weight (α)

Baseline State 47.9129 (σ) 0.2548
Excited State 9.6364 11.2521 0.7452
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Figure 4: Probability density distribution of fluorescence change ( ∆F/F ) for Neuron 29, modeled
using a Gaussian Mixture Model. The histogram represents the distribution of fluorescence changes,
while the red curve shows the fitted Gaussian mixture model. The model highlights the underlying
statistical structure of the data, capturing both the central tendency and the spread of fluorescence
changes around the mean, with peaks near 0.

3.3. Correlation Coefficient Analysis

The Pearson correlation coefficient heat map (Figure 5) provided insights into the functional connec-
tivity between neurons. Neurons with high correlation coefficients (>0.7) formed clusters, indicating
potential functional networks. These networks suggest synchronized activity across multiple neurons,
which may reflect cooperative behavior in response to visual stimuli.

The matrix revealed several strong inter-neuron correlations, suggesting a networked response
to the external environment. This clustering was particularly prominent in neurons located in close
proximity within the visual cortex, indicating local synchrony.
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Figure 5: Neuron connectivity matrix represented by a correlation coefficient matrix. Each entry in
the matrix corresponds to the correlation coefficient between the activity of two neurons, with neuron
indices along both the x- and y-axes. The color bar on the right indicates the strength of the corre-
lation, where values range from -1 (strong negative correlation) to +1 (strong positive correlation).
High positive correlations are represented by warmer colors (yellow), while negative correlations are
represented by cooler colors (blue).

Due to the large size of the 233x233 matrix, we have presented a 5x5 submatrix instead as shown
in Figure 5(b).

Figure 5(b): 5×5 submatrix

3.4. Deconvolution of Calcium Imaging Data

Deconvolution was performed to infer neuronal spike events from the calcium imaging data. The
OASIS deconvolution algorithm effectively recovered the underlying spike trains from the filtered
fluorescence traces. The resulting deconvolved data allowed for precise identification of spike events,
with a temporal resolution significantly improved compared to the raw calcium signals.
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The inferred spikes for a selected neuron (29) are shown in Figure 6, where each vertical line
corresponds to an action potential. The average firing rate was calculated as 7.4172 spikes per second,
demonstrating the increased temporal precision achieved through deconvolution.

Figure 6: Analysis of calcium imaging data across three stages. The top panel shows the Filtered Cal-
cium Signal, representing the raw calcium signal after applying a filtering process to reduce noise. The
middle panel displays the Denoised Calcium Signal processed using the OASIS algorithm, highlight-
ing significant fluctuations corresponding to neural activity while minimizing noise. The bottom panel
shows Inferred Spikes derived from the denoised signal using the OASIS spike inference method, with
circles representing detected spikes across time frames.

4. Discussion

The results from the experiment indicate that the four methods of analyzing the calcium imaging are
effective. They further overcome the challenge from temporal resolution, low noise to signal ratio,
network connectivity of neurons, and variability in signal. For the first method, several high pass filter
were tested and found out the one that best filter the noise is the FIR high pass filter. In fact, the FIR fil-
ter is the only appropriate one shown in the Table 1 as all the other ones showed negative SNR, which
is abnormal in this case. This is because the Butterworth high pass filter is used in audio processing
and communication systems. The Chebyshev high pass filter is used in radar systems. (Chebyshev
Filter - an Overview | ScienceDirect Topics, n.d.)(Ellis, 2012) Secondly, both the Gaussian mixed
model and the correlation matrix showed the behavior of each neuron clearly. Moreover, the deconvo-
lution algorithm predicted the potential spikes accurately. Our paper not only provided new methods
for other researchers to use but also support their experimental conclusion and hypothesis. For in-
stance, according to the paper of ”Calcium imaging analysis - how far have we come?”(Robbins et
al., 2021) researchers tried to use several methods including the denoising method to improve the
SNR. They used local filters such as anistropatric filter and Gaussian smoothing filter, which are com-
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putationally light but have clear limitations. Using the high pass filters might help them solve this
challenge can contribute to more perfect results. Of course, there are limitations in our experiment.
First, all the data we chose is from the same source, which could be not convincing to prove that the
result is conclusive. It becomes difficult to validate whether the observed patterns are robust across
different subjects or whether they hold under varying experimental conditions. This limits the overall
scope of the experiment and makes it challenging to draw conclusions beyond the specific dataset.
Besides, the single dataset might not reflect the diversity of neural responses present in a population
of cells or across multiple trials. Repeated use of the same dataset increases the risk of overfitting
the analysis to one specific set of conditions, thus reducing the experiment’s ecological validity. As
a consequence, further studies should focus on whether the four methods would indicate the similar
result as the neurons are at different regions of mice and with mice that performing different tasks.
The following experiment is a sample from (Precision Calcium Imaging of Dense Neural Populations
via a Cell-Body-Targeted Calcium Indicator, www.https://doi.org/10.1016/j.neuron.2020.05.029)

Figure 7: Imaging data showing cortical dynamics and behavioral correlations during a task.
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Panels A and B: (A) Anatomical reference image and (B) correlation map showing areas of the
cortex activated in relation to specific movements. Colors represent the correlation coefficient (r), with
red indicating higher correlation between calcium signals and movement, measured as a percentage
change in fluorescence (∆F/F0).

Panels C-E: Example frames from the experiment depicting different behaviors, including tongue/mouth
movements, whisker/face movements, and hindleg movements (highlighted in colored boxes: orange
and blue). Panel E shows a zoomed-in view of the hind leg movement.

Panel F: Heatmaps showing the brain regions correlated with specific movements, with color-
coded labels for tongue/mouth (blue), whisker/face (orange), and hindlegs/tail (red). The heatmaps
highlight cortical activity associated with each type of movement.

Panel G: Temporal dynamics of movements (top) aligned with cortical activity (bottom). The
movement traces show specific task events (Go, No-Go, Lick, and Reward) aligned with the activity
of different body parts (tongue/mouth, whiskers/face, hind legs), and cortical fluorescence dynamics
are represented using GCaMP6 signals.

Panel H: A summary heatmap representing population neural activity relative to task cues. Time
is shown from -2 seconds before the cue to +2 seconds after the cue, with color intensity indicating
activity levels in various regions of the cortex.
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