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Abstract: This paper mainly focuses on the Weierstrass Functions. Firstly, several properties 

of the Weierstrass Functions are introduced. Process of solving the conjecture suggested by 

Mandelbrot in 1977, that the graphs of Weierstrass type of functions have Hausdorff 

dimension DH = 2 +
log a

log b
. Since existing studies have proved such result with additional 

conditions through various approaches, this paper provides necessary information indicating 

this evolving progress in methodology. Given the intertwined relationship between the two, 

this paper also includes different methods utilized to prove that the Box-counting dimension 

of the graphs of Weierstrass type of functions is the given number above. In addition, the 

possible application of Weierstrass Functions and its relation to, for example, financial 

market are also included. Providing the summary of works, this paper look forward to the 

final solution to this long-lasting conjecture. 
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1. Introduction 

First suggested by Weierstrass in 1872, a type of function  

 w(x) = ∑ ak cos(2πbkx)∞
k=0  (1) 

Where 

 0 < a < 1, ab ≥ 1 +
3

2
π, b ∈ 2n + 1, n ∈ ℕ (2) 

is continuous but nowhere differentiable [1]. In 1916, Hardy rigorously proved that for all a and b, 

such that 0 < a < 1 < b, and ab ≥ 1, the above Weierstrass function is nowhere differentiable: first 

when b is an integer and then b in general cases [2]. In 1977, Mandelbrot pointed out the fractal nature 

of the Weierstrass functions [3]. Then it has always been conjectured that the Hausdorff dimension of 

the graph Weierstrass functions isDH , as mentioned in almost all following papers. This study 

particularly refers to Falconer’s [4]. Another form of nowhere differentiable function, Takagi 

function, will also be used quite often [5,6], its Hausdorff dimension is 1 [7]. Weierstrass functions 

are useful in may ways due to their periodicity, continuity, nowhere differentiability, and fractality.  

This paper summarizes all the related essay on the topic of Weierstrass function from the 

theoretical progress on the proof of the Hausdorff dimension of the Weierstrass function to the 

application in real-life situations. These applications deeply rooted in the outstanding features of the 
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function. By stressing the logical connection among essays, this paper points to a potential future 

direction of theoretical advancement and application.  

2. Progress of the Hausdorff dimension of the Weierstrass functions 

2.1. Definition 

Definition 1 (Hausdorff Measure) Let S be a subset of ℝn and d is a non-negative real number. For 

any δ > 0, this study defines: 

 Hδ
d(S) = inf {∑ |Ui|

d: {Ui} is a δ − cover of S}∞
i=1   (3) 

and 

 Hd(S) = lim
δ→0

Hδ
d(S) (4) 

Definition 2 (Hausdorff-Besicovitch dimension) 

 dimHS = inf{d ≥ 0: Hd(S) = 0} = sup{d:Hd(S) = ∞} (5) 

In 1937, Besicovitch and Ursell [8] proved the following theorem by using the d-measure and 

Heine-Borel theorem to construct a set of overlapping interval. Also, they studied ϕ0(x) = dist(x, ℤ) 

instead of the cosine curve in w(x); most of the listed studies did not directly deal with Weierstrass 

functions, instead considering a broader class of functions. On the other hand, they proved that for an 

appropriate sequence of {bn}  such that if 
bn+1

bn
→ ∞  sufficiently slowly as n → ∞ , then the 

Hausdorff dimension is DH. 

Definition 3 The dimensional number d of the curve y = f(x) , where f(x)  belongs to the 

Lipschitz δ-class (Lipδ), satisfies the inequality 

 1 ≤ d ≤ 2 − δ  (6) 

In 1992, following Besicovitch and Ursell, Ledrappier [9] also focused on ϕ0(x) = dist(x, ℤ) 

and specify the 
bn+1

bn
 condition in Besicovitch and Ursell to bn, that is 

bn+1

bn
= b.  

2.2. Alternative definition 

In 1980, illustrating the graph of Weierstrass functions at different dimensions, including D =
1.2 and etc, Berry and Lewis introduced a "potential" definition of the dimension, which is the 

electrostatic energy of a unit-density positive charge uniformly covering the x-axis then displaced to 

the graph of w(x), with a modified Coulomb law [10]. To give a better understanding of this, similar 

definition was also used by Orey in 1970, to prove that a Gaussian process has stationary increments 

and satisfies certain scaling properties; then its graph almost surely has a Hausdorff dimension of 2 −
α, where α is the index of the Gaussian process [11]. This study also related to Taylor [12]. Here this 

definition is introduced with the following falconer [13]. 

Definition 4 s-energy at a point x of ℝn on the mass distribution μ is  

 Is(μ) = ∬
dμ(x)dμ(y)

|x−y|s   (7) 

Theorem 1. Let F be a subset of ℝn. 

(a) If there is a mass distribution μ on F with Ia(μ) < ∞, then Ha(S) = ∞ and dimHF ≥ a. 

(b) If F is a Borel set with Ha(s) > 0, then there exists a mass distribution μ on F with Ia(μ) <
∞ for all 0 < t < a. 
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In 1996, Hunt proved the following theorem, which is a huge step forward [14].  

Theorem 2. If each θnis chosen independently with respect to the uniform probability measure in 
[0,1], then the Hausdorff dimension of the graph of wθn

(x) is DH, where 

 wθn
(x) = ∑ akcos (2π(bkx + θn)∞

k=0   (8) 

The proof of the lower bound utilized the definition of s-energy. 

2.3. Attractor in dynamical system 

Based on the results of J. Moser [15] in 1968 and Kaplan, Mallet-Paret, and Yorke [16] in 1984, w(x) 

appears as attractors in dynamical systems. Most of the subsequent studies followed this path. 

Intuitively, an attractor is a set of the phase space of a system that all paths eventually end up at.  

In 1986, Mauldin and Williams [7] proved for modified Weierstrass functions the following 

theorem stood, with the help of Zygmund’s class. 

Theorem 3. There exist a constant C > 0, the Hausdorff dimension of the graph of Wb(x) is 

bounded below by 2 − α −
C

ln b
, where 

 Wb(x) = ∑ b−αn[ϕ(bnx + θn) − ϕ(θn)]∞
n=−∞  (9) 

where 0 < α < 1 < b, each θn is an arbitrary number, and ϕ has period one.  

In 1989, another lower bound was suggested by Przytycki and Urbański [17] that if φ: I → ℝ, 

then dimH(graph φ) ≫ D(α,
C4

C3
) > 1, where D(α,

C4

C3
) is a constant. In the same essay, Przytycki 

and Urbański also explored that if b = 2, and replace the cosine with a Rademacher function, then 

the Hausdorff dimension of the graph of w(x) is equal to DH, with other limiting conditions. There 

are also further discussions on the Hausdorff dimension of the Rademacher functions [18,19]. Similar 

to this specific passage, there are also several essays exploring self-affine sets where most of them 

exclude Weierstrass functions, but they are still worth noticing [20-22]. In 1986, Kôno used modified 

Takagi functions f to show that if f is a nearly self-affine function with other conditions, then the 

Hausdorff dimension of the graph of f is DH [23]. 

In 1992, Ledrappier [9] introduced dynamical system and Markov partition into this question. 

Ledrappier specified to Γ({bn}, ϕ, s) = {(x, y)y = ∑ bn(s−2)ϕ(bnx)∞
n=0 , where b = 2, ϕ = ϕ0, s =

1.5 whose Hausdorff dimension is s. Also, he proved the following Corollary that is important with 

relation to Erdös number [24]. 

Theorem 4. Let 21−s be an Erdös number, then dimHΓs,ϕ = s. 

2.4. Recent progress of the Hausdorff dimension of the Weierstrass functions 

In 2001, Liu [25] showed for the subsets of the graph of some similar functions has Hausdorff 

dimension equal to one. Without specifying to the case of bn, in 2011, Baranski [26] focused instead 

on that if 
bn+1

bn
→ ∞ as n → ∞, the essay proved for f(x), that is w(x) with its cosine curve replaced 

by some specific Lipschitz function, then 

 dimH(graph f) = dimB(graph f) =  1 + lim
n→∞

inf
log+dn

log(
bn+1dn

dn+1
)
 (10) 

 dimB(graph f) =  1 + lim
n→∞

inf
log+dn

logbn
  (11) 

where 
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 dn = a1b1 + ⋯ + anbn  (12) 

This conclusion is based on Carvalho [27], a subsequent important study was by Baranski, Barany, 

and Romanowska [28], using the Ladrappier-Young theory, based on the result by Tsujii [29], they 

proved that for integer b ≥ 2, dimHμa,b = DH, for every a close enough to 1. In 2017, Keller pushed 

forward their conclusions [30]. A survey of previous results could also be found in Barański’s paper 

[31]. These results clearly followed the study by Ledrappier on dynamical system. 

In 2018, Shen proved the following theorem [32]. 

Theorem 5. For any integer b ≥ 2, any and a ∈ (b−1, 1), the Hausdorff dimension of the graph of 

the Weierstrass function w(x) is equal to DH. 

This also follows Ledrappier’s theorem[9], that is  

Theorem 6. Let ϕ: ℝ → ℝ,be a continuous, piecewise C1+αand ℤ-periodic funciton. Assume that 

dim(mx) = 1 holds for Lebesgue a.e.x ∈ (0,1), Then the Hausdorff dimension of the graph fλ,b
ϕ

 is 

equal to D. 

In 2021, Ren and Shen himself [33] proved a another theorem that went deeper than [28]. 

3. Alternative dimension 

Definition 5. (Box-counting Dimension) 

 dimB(S) = lim
δ→0

log M(δ)

− log δ
 (13) 

where M(δ) is the the number of boxes of length side δ to cover S. 

Theorem 7. For a>1, the Weierstrass functions have Box-counting dimension DB = 2 +
log a

log b
.  

An straightforward proof of the theorem could be found in Falconer’s Fractal Geometry: 

Mathematical Foundations and Applications; the proof of this theorem follows two propositions [13]. 

Also, for a rigorous and more complicated proof with connection to ergodic theory, this paper refer to 

Yorke [16], where the authors proved that the Box-counting dimension on the attracting torus is 

equivalent to the Lyapunov dimension.  

The reason why the Box-counting dimension of the Weierstrass functions interest us so much is 

the following theorem. 

Theorem 8.  

 dimH(S) ≤ dimB(S)  (14) 

Indeed, intuitively, Hausdorff dimension covers the set S with varied length covering, whereas 

Box-counting dimension fixes the length. Therefore, future discussion of the Hausdorff dimension of 

the graph of Weierstrass functions will almost certainly focus on its lower bounds. 

Without doubt, there are other form of dimension definition, such as packing dimension and 

k-dimension, witch leads to [34-36]. 

4. Applications 

In this section this paper demonstrate the process of using Weierstrass-Mandelbrot functions in 

application. 

4.1. Turbulence 

There have been many studies that apply fractal geometry to turbulence. In 1975, Mandelbrot [37] 

stated that turbulent scalar fields exhibit a fractal nature, with a fractal dimension of some 

iso-surfaces falling between 2 and 3 [38-42]. 
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The Weierstrass function captured the fractal nature of turbulence. There is no direct connection 

between studies, but this paper listed them below. In 1992, Hemphrey, Schuler, and Rubinsky argued 

that w(x) represent the fractal component of turbulent velocity in both isotropic and anisotropic 

flows, such as applications in rotating disk flows. The choice of the Weierstrass function gave them 

the ideal irregularity in a turbulent velocity record [43]. In 1999, based on the result of Mauldin and 

Wiliams [7], Rocco and West showed that generalized Weierstrass functions are a solution to a 

fractional differential stochastic equation of motion [44]. In 2022, Liu, Shi and Hu applied w(x) to 

the simulation of atomospheric scalar turbulence [45]. In 2025, Cai et al. utilized w(x) to simulate 

typhoon wind speeds. Based on the Weierstrass function, they also provided the comparison between 

different methods of calculating the dimension, including box-counting method [46]. In the essay, 

they also summarized the applied method of several studies in calculating the dimension of the wind. 

To be more specific, in 1994, Sarkar conducted a comparison among existing methods in calculating 

the fractal dimension of an image and suggested an efficient differential box-counting approach [47].  

4.2. Financial market 

In 2007, Mandelbrot [48] discussed detailedly in his book The Misbehavior of Markets: A fractal 

view of financial turbulence that to measure the market behavior, fractals could be a more effective 

way than traditional methods [49-51]. A detailed example of using fractal analysis could be found in 

Banerjee and Mulligan’s paper [52].  

In 2005, based on the Lomb analysis of a Weierstrass-type function [53], Bartolozzi et al., argued 

that the spectral pattern of the daily closure of the four most important indexes can be captured by 

Weierstrass function [54]. This research was based on the results given by Zhou and Sornette in 2003, 

that the Weierstrass function could capture some specific features of the stock market since 2000 [55]. 

In 2015, Zhang, Yu, and Sun suggested that w(x) could capture the tendency and variation of actual 

stock market indexes with different Hausdorff dimensions, by changing the values of a and b. The 

dimension here played an important roles in simulating the market behavior [56]. In 2023, Zhang 

explored the effect of disturbance on the economic and financial system using w(x) [57].  

4.3. Other studies 

In 1990, Majumdar and Tien appliedw(x)with different Hausdorff dimensions to measure the 

roughness of both Brownian and non-Brownian rough surfaces, since w(x)  demonstrated both 

features of continuity, non-differentiability, and self-affinity, which are desirable [58]. In 2012, Jiang 

and Zheng used the Weierstrass fractal function to analyze the thermal contact resistance of rough 

surfaces [59]. 

4.4. Algorithm 

In 2017, Dong, Ju, and Gao suggested that the cuckoo search algorithm could be adopted to determine 

the dimension since, as this paper suggested, the Hausdorff dimension of the Weierstrass function is 

still not proved. Specifically, the cuckoo algorithm could avoid using the box-counting method that 

fixs the length of each cover; instead, it gives a more “Hausdorff-like” measure. Therefore, it 

provides a more precise figure of the Weierstrass function [60].  

5. Conclusion 

This paper noticed the peapers by Qiu Y. and Liang Y. [61], they provide a general summary of all 

fractal dimensions related to this problem in chronological order but not that specific and logical, 

whereas our essay provides a much more in-depth understanding of the logic between results and 
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focuses more on Hausdorff dimension. The conjecture has not been proved up till now; yet the 

Weierstrass function was widely used in various fields of physics and finance. It is hard to find a 

function with such distinctive features as the Weierstrass function. It is this versatile nature of the 

function that promotes its appearance in and relation to various areas and different approaches in 

solving the conjecture. These approaches are all connected and demonstrate a diversity. Also, 

different measures or dimensions give rise to different results when calculating the dimension of the 

Weierstrass function, rendering a huge disparity among the difficulty of calculation and application in 

reality.  
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