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Abstract: This paper discusses the core properties and specific values of the Riemann zeta 

function, 𝜁(𝑠), which is central to analytic number theory and prime number distribution. 

This paper begins with the Basel Problem, a historic problem about the sum of the reciprocals 

of the squares of natural numbers. Leonhard Euler's neat solution to the Basel Problem 

revealed 𝜁(2) = 𝜋2 6⁄  and opened the window of interactions from fundamental geometric 

constants to infinite series. After providing Euler's intuition, the paper explores the 

generalization of 𝜁(2𝑛) through many avenues, emphasizing the value of Bernoulli numbers 

for fluid closed-form expressions. The author fully verifies how power series expansions, 

contour integration, and Fourier series are all converging into the math leading people to the 

zeta-related identities. The author also discusses where the Riemann zeta function is used 

outside of pure math. In physics, especially quantum and statistical modeling, the author 

explores computational techniques. These are essential for advancing people’s understanding 

of prime number distribution and modern cryptography, while also observing connections in 

math from past to future. 

Keywords: Riemann zeta function, Analytic number theory, Basel problem, Bernoulli 

numbers 

1. Introduction 

The Riemann zeta function 𝜁(𝑠)  is fundamental in analytic number theory, linking many fields 

including complex analysis, number theory, and probability. It first appeared in Euler's 1734 solution 

to the Basel Problem [1]. This function has played an important role in understanding prime numbers, 

due to its deep relation to the distribution of primes. The Basel problem asks whether the sum of the 

reciprocals of the squares of the natural numbers ∑ 1 𝑛2⁄
∞

𝑛=1  was finite, in 1644, and Euler correctly 

identified the sum 
𝜋2

6
 in his beautiful solution. He opened a never-before-seen connection between 

seemingly unrelated fields of mathematics [2]. 

Bernhard Riemann, expanding on Euler's groundwork, mapped the zeta function to the complex 

plane, which led to the (infamous) Riemann Hypothesis from 1859. This hypothesis states that all of 

the non-trivial zeros of the zeta function have their real component equal to 1/2. The conjecture is 

still open but has extremely far-reaching implications in modern-day mathematics, especially for its 

views in prime distribution. The zeta function, denoted by the series ∑ 1 𝑛2⁄
∞

𝑛=1  for Re(s) > 1, has a 
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well-defined analytic continuation that exists across the entire complex plane except for a simple pole 

at 𝑠 = 1 [3]. 

The literature review highlights the Riemann zeta function being applied in many areas [4]. In 

physics, particularly in quantum mechanics and statistical mechanics, zeta functions are relevant in 

explaining certain quantum states or defining thermodynamic quantities. In computational 

mathematics, efficient algorithms for approximating the zeta function at the critical points are 

fundamental to modern cryptographic systems and modern computational number theory. 

In this paper, the author analyzed some specific methods related to the Riemann zeta function. In 

Section 2, Both historical and analytical techniques were analyzed for solving the Basel Problem, 

discussing Euler’s original technique and other techniques in addition to his. Section 3 investigates 

computational techniques for evaluating the zeta function at even integers, including generating 

functions and their relationship to Bernoulli numbers, leading to a general formula. 

2. Techniques for the Basel Problem 

The Riemann zeta function is initially defined by the infinite series: 

𝜁(𝑠) = ∑
1

𝑛𝑠

∞

𝑛=1

, for 𝑅𝑒(𝑠) > 1 (1) 

For example, 𝜁(2) = ∑
1

𝑛2
∞
𝑛=1 = 1 +

1

22 +
1

32 +
1

42 + ⋯  can transform this function with prime 

denominator since every integer can uniquely represent as a product of prime powers: 

𝜁(𝑠) = 1 +
1

2𝑠
+

1

3𝑠
+

1

𝑠2𝑠
+

1

(2 × 3)𝑠
+ ⋯ (2) 

The Basel Problem was first suggested by Italian Mathematician Pietro Mengoli in 1644, and was 

solved by The God of Math Euler in 1735. It is found that 𝜁(2) =
𝜋2

6
. 

2.1. Euler’s original approach 

An interesting fact is when Euler first saw this formula, he immediately spoke out the accurate answer 

without thinking, just based on his intuition. People will never know how he could just get the answer 

from nowhere, but people can try to approach and find the answer by calculation. Euler investigated 

the Basel Problem by employing infinite product expansions of sine functions to link trigonometric 

identities with infinite series. In this section, the author explores the ways in which Euler cleverly 

manipulated series expansions. 

2.1.1. Outline of Euler’s argument 

At first, take a look at the Taylor expansion of 𝑠𝑖𝑛(𝑥), which is that 

𝑠𝑖𝑛(𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
… . . (3) 

Since this is a polynomial, people can definitely find a solution by factorization, which means that 

the equation 𝑠𝑖𝑛(𝑥) has both an infinite sum form and an infinite product form [5]. 

When mathematicians try to factorize a function, they usually look at its zeros, and times them 

together. for example, for function 𝑓(𝑥) = 𝑥2 − 1, 𝑓(𝑥) has a zero of 𝑥 = 1 and – 1  when 𝑦 = 0. 
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Therefore, one can have the factorization form of 𝑓(𝑥) is (𝑥 − 1)(𝑥 + 1). People can try the same 

thing on 𝑠𝑖𝑛(𝑥). Known that the zeros are  . . . . . , – 2𝜋, – 𝜋, 0, 𝜋, 2𝜋, . . . . . .. and it goes infinitely. By 

using the method mentioned above, one can get 

𝑠𝑖𝑛(𝑥) = ⋯ … (𝑥 + 2𝜋)(𝑥 + 𝜋)(𝑥)(𝑥 − 𝜋)(𝑥 − 2𝜋) … … (4) 

It seems like the right solution since all the multiples of 𝜋 are the solutions to this formula, but if 

people replace any other number, the result is divergent. To make this formula to converge to 𝑠𝑖𝑛(𝑥), 

A coefficient 𝐶 might need to be employed to the equation. Rearrange the equation one has: 

𝑠𝑖𝑛(𝑥) = 𝐶𝑥 (𝑥2 − 𝜋2) (𝑥2 − 22𝜋2) (𝑥2 − 32𝜋2) … … . (5) 

Dividing 𝑥 on both side of the equation, then one can find the limits: 

𝑙𝑖𝑚
𝑥→0

𝑠𝑖𝑛(𝑥)

𝑥
= 𝑙𝑖𝑚

𝑥→0
𝐶 (𝑥2 − 𝜋2) (𝑥2 − 22𝜋2) (𝑥2 − 32𝜋2) … … (6) 

Therefore, 1 = 𝐶(– 𝜋2)(– 22𝜋2)(– 32𝜋2) ⋯ . Rearrange the equation and one can get 𝐶 =
1

(–𝜋2)(–22𝜋2)(–32𝜋2).......
. Replacing the 𝐶, one gets previously: 

𝑠𝑖𝑛(𝑥) =
𝑥 (𝑥2 − 𝜋2) (𝑥2 − 22𝜋2) (𝑥2 − 32𝜋2) … … .

(– 𝜋2)(– 22𝜋2)(– 32𝜋2) … …
(7) 

Or equivalently,  

𝑠𝑖𝑛(𝑥) = 𝑥 (1 −
𝑥2

𝜋2
) (1 −

𝑥2

22𝜋2
) (1 −

𝑥2

32𝜋2
) … … . (8) 

Now equating these two expansions and comparing coefficients of 𝑥2  on both sides –
1

3!
=

– ∑
1

𝑛2𝜋2
∞
𝑛=1 . From this equality, Euler concluded 

∑
1

𝑛2

∞

𝑛=1

=
𝜋2

6
(9) 

Even though the notion of Euler was prior to the rigorous definitions of infinite products and 

uniform convergence, the outline of his idea was later given a solid foundation in the analysis in the 

19th and 20th centuries [6]. The key point is to realize that both of the expansions of 𝑠𝑖𝑛(𝜋𝑥)/(𝜋𝑥) 

must represent the same analytic function, so their power series expansion must agree term by term. 

2.1.2. Key proof steps for 𝜻(𝟐) 

A more systematic version of this argument goes by defining the Product 𝑓(𝑥). Let:  

𝑓(𝑥) = ∏ (1 −
𝑥2

𝑛2
)

∞

𝑛=1

(10) 

Each factor has zeros at ±𝑛. So 𝑓(𝑥) has zeros precisely at ±1, ±2, ±3, ⋯. 
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The first is to relate 𝑓(𝑥) to 𝑠𝑖𝑛(𝜋𝑥). 𝑠𝑖𝑛(𝜋𝑥) has precisely those same zeros. By looking at the 

leading behavior near𝑥 = 0, mathematician discovers 𝑠𝑖𝑛(𝜋𝑥)/(𝜋𝑥) shares the same zeros with the 

same multiplicities. The typical statement is that 

𝑠𝑖𝑛(𝜋𝑥) = 𝜋𝑥 ∏ (1 −
𝑥2

𝑛2
)

∞

𝑛=1

(11) 

The second is the Power Series Comparison. Next, by expanding both sides in the series of power, 

around 𝑥 = 0, it is found that the coefficient of 𝑥2 gets from 𝑠𝑖𝑛(𝜋𝑥) ≈ 𝜋𝑥 −
𝜋3𝑥3

3!
+ ⋯. Dividing by 

𝜋𝑥, the coefficient of 𝑥2 in 𝑠𝑖𝑛(𝜋𝑥)/(𝜋𝑥) is –
𝜋2

6
. On the right side, the coefficient of 𝑥2 gets from 

expanding each factor. The matching terms yields –
𝜋2

6
=– ∑

1

𝑛2
∞
𝑛=1  [7]. Dropping the negative sign on 

both sides, it is again to find that ∑
1

𝑛2
∞
𝑛=1 =

𝜋2

6
, which is 𝜁(2). This procedure can be generalized to 

higher powers, giving insight into  𝜁(2𝑛). 

2.2. Additional approaches to the Basel Problem 

Euler’s solution is the classic. However, there are still lots of alternative paths to the same result that 

illustrate broader concepts in analysis. 

The first is the Fourier series approach. The Fourier series approach provides another powerful 

method of analysis. Consider a periodic function 𝑓(𝑥) = 𝑥2 , defined on the interval [– 𝜋, 𝜋] and 

periodically extended [8]. Its Fourier expansion is: 

𝑥2 =
𝜋2

3
+ 4 ∑(– 1)𝑛

∞

𝑛=1

𝑐𝑜𝑠(𝑛𝑥)

𝑛2
(12) 

To determine the Basel sum, series at 𝑥 = 0 were evaluated: 02 =
𝜋2

3
+ 4 ∑

(−1)𝑛

𝑛2
∞
𝑛=1 . Hence, 

∑
(– 1)𝑛

𝑛2

∞

𝑛=1

=–
𝜋2

12
(13) 

This alternating series can be related to the original series using algebraic manipulations and 

leading back to the Basel Problem. 

The second is the contour integration methods (complex analysis). Using residues and carefully 

chosen contours, one can sometimes evaluate sums like ∑1/𝑛2 . This method is a bit more advanced 

but elegantly ties in the integral calculus of complex functions with real series. 

The third is the polynomials and partial fractions. Intelligently developing polynomials out of the 

roots that are integers, then studying the partial-fraction decomposition, one can extract terms such 

as 1/𝑛2,keeping in line with basically what Euler did. It also shows how much a mathematician can 

do with partial fractions in summation problems. All of these approaches provide the same purpose, 

that they all demonstrated that 𝜁(2) is linked to deep structures in analysis, with 𝜋 appearing naturally. 
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3. Computational techniques for evaluating 𝜻(𝟐𝒏) 

Although the Basel Problem pertains to 𝜁(2), Euler noted that similar methods may solve or at least 

give closed forms for 𝜁(2)with 𝑛 a positive integer. Next, show how generating functions, Bernoulli 

numbers, and one particular series converge to a large formula: 

𝜁(2𝑛) = (– 1)𝑛+1
𝐵2𝑛(2𝜋)2𝑛

2(2𝑛)!
. (14) 

where 𝐵2𝑛 are Bernoulli numbers [9]. 

3.1. Bernoulli numbers: definition and basic properties 

Bernoulli numbers {𝐵𝑘}  form a sequence appearing in expansions of many classical functions, 

especially those related to power sums, usually show in the Taylor series expansion of the function 

𝑥 (𝑒𝑥 − 1)⁄ . 

Specifically, one can write 

𝑥

𝑒𝑥 − 1
= ∑ 𝐵𝑘

∞

𝑘=0

𝑥𝑘

𝑘!
(15) 

with the 𝐵𝑘 being constants determined by the Maclaurin series expansion. For instance, 𝐵0 = 1, 

𝐵1 =–
1

2
, 𝐵2 =

1

6
, 𝐵3 = 0, 𝐵4 =–

1

30
, 𝐵6 =

1

42
, and so on, where most odd-indexed Bernoulli numbers 

beyond 𝐵1 are zero. 

However, how Bernoulli numbers relate to 𝜁? One of Euler’s breakthroughs was uncovering that 

the sums of powers of integers like ∑ 𝑘𝑝𝑁
𝑘=1 , can be expressed through Bernoulli numbers. Taking 

the limit as 𝑁 → ∞ (if it converges or is interpreted suitably) provides expressions for 𝜁(𝑝). In 

particular, for even 𝑝 = 2𝑛, there is a known closed form. 

3.2. Generating functions that lead to 𝜻(𝟐𝒏) 

Another perspective is the generating function approach. Consider 

𝑓(𝑥) = ∑
1

𝑛2

∞

𝑛=1

𝑥𝑛 (16) 

while not quite 𝜁(2), examining power series of related forms for different exponents can lead back 

to the Riemann zeta function in terms of lim
𝑥→1–

. Methods of this nature are often quite useful for 

numerical approximations or expansions for 𝜁(2𝑛). 

The author shall construct a related series and define 

𝑆𝑚(𝑥) = ∑
𝑥𝑛

𝑛𝑚

∞

𝑛=1

(17) 

For |𝑥| < 1 , this series converges absolutely. As 𝑥 → 1  from below (i.e., 𝑥 ↗ 1 ), 𝑆𝑚(𝑥) 

approaches 𝜁(𝑚) if 𝑚 > 1. If one can amend 𝑆𝑚(𝑥), one may sometimes be able to turn it into 

integrals of simpler functions, or into a summation that involves Bernoulli numbers, since it is 
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possible to connect expansions for 
1

1−𝑥
 (a geometric series) and its consecutive derivatives of integrals, 

in particular higher-order ones, to sums of integer powers. 

The carefully taking the limit as 𝑥 → 1– yields 

𝑙𝑖𝑚
𝑥→1–

𝑆𝑚(𝑥) = ∑
1

𝑛𝑚

∞

𝑛=1

= 𝜁(𝑚) (18) 

Although this is a more of a general outline than a proof for the closed-form Bernoulli formula for 

even arguments, the fundamental idea is here: expansions in series plus the expansions for rational 

functions or (...) exponential-related expressions. 

3.3. Derivation of the formula for 𝜻(𝟐𝒏) 

Now let the author outline a more direct argument for Eq. (14). The author then mentions that 

𝑠𝑖𝑛(𝜋𝑥) = 𝜋𝑥 ∏ (1 −
𝑥2

𝑛2)∞
𝑛=1  and a closely related function is 𝜋𝑐𝑜𝑡(𝜋𝑥). A known expansion is 

𝜋𝑥𝑠𝑖𝑛(𝜋𝑥) = 1 −
𝑥2

3
−

𝑥4

45
− ⋯ … . +2 ∑

𝑥2

𝑥2 − 𝑛2

∞

𝑛=1

(19) 

Such expansions can be manipulated to isolate series like ∑
1

𝑛2𝑘
∞
𝑛=1 .  

The expansions for 𝜋𝑥𝑐𝑜𝑡(𝜋𝑥) can be written in terms of Bernoulli polynomials or Bernoulli 

numbers: 

𝜋𝑥𝑐𝑜𝑡(𝜋𝑥) = ∑(– 1)𝑘

∞

𝑘=0

22𝑘𝐵2𝑘

(2𝑘)!
(𝜋𝑥)2𝑘 (20) 

The precise formulation for the summations ∑1/𝑛2𝑘 is obtained via comparison of coefficients in 

those expansions or by carefully evaluating at appropriate values of 𝑥, yielding the familiar closed-

form expression in terms of Bernoulli numbers [10]. 

For the explicitly obtained 𝜁(2𝑛), the result states that 𝜁(2𝑛) = ∑
1

𝑘2𝑛
∞
𝑘=1 = (– 1)𝑛+1 𝐵2𝑛(2𝜋)2𝑛

2(2𝑛)!
. 

For example, when 𝑛 = 1, 𝐵2 =
1

6
, one gets 𝜁(2) =

𝜋2

6
, which is consistent with the Basel Problem 

result. 

In contemporary mathematics, the researchers often use these closed forms to compute 𝜁(2𝑛) to 

high accuracy. It is easy to compute 𝜋2 and 𝜋4 to many decimal places and to compute factorials and 

the Bernoulli numbers for moderately large 𝑛. This is important in different areas. In prime-related 

computations, zeta values at large arguments can sometimes be part of bounding prime gaps or 

analyzing advanced prime distribution functions. In cryptography, while 𝜁(2𝑛) specifically may not 

be the direct focus, the broader toolbox for approximating 𝜁(𝑠) at large or complex 𝑠 underpins 

computations that show up in certain primality tests or zero verifications in cryptography. 

4. Conclusion 

Historically, the Riemann zeta function, originally a fundamental part of the Basel Problem, has 

become a major link between many parts of mathematics and physics. Euler's amazing result that 

∑ 1 𝑛2⁄∞
𝑛=1 = 𝜋2 6⁄  was the motivating force behind this development. In addition, the expansions 
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that result in closed form of 𝜁(2𝑛)—in terms of Bernoulli numbers—execute the same deep relation 

for infinite series and special constants while also revealing the geometry of this part of analysis. In 

addition to these classical values, 𝜁(𝑠)  is an extremely complex function, exhibiting fascinating 

behavior throughout the complex plane. The renowned Riemann Hypothesis remains unsolved and 

highlights the centrality of this function in understanding primes. From a computational perspective, 

the capacity to evaluate 𝜁(𝑠) at specific points is the basis of research in cryptanalysis, random matrix 

theory, prime testing, and other advanced topics. 

In summary, the Basel problem showed a remarkable convergence to 𝜋2/6, bridging infinite sums 

and geometry. In analytical continuation, Riemann extended 𝜁(𝑠) to all complex 𝑠 ≠  1, and this 

extension is at the heart of modern number theory. For the closed forms at even integers, the 

relationship with Bernoulli numbers gives a neat expression for 𝜁(2𝑛). Finally, for the computational 

& physical significance, zeta functions appear in quantum field regularizations, thermodynamic sums, 

and advanced prime distribution studies. 

This paper provides readers with proofs and derivations built-in steps - spanning from the product 

expansions of Euler to the general formula where Bernoulli numbers appear, and also serves as 

encouragement for those with a lesser mathematics background to see how and why it is these (and 

others) are beautiful formulas.  The author has also hinted to the computational methods that permit 

the exploration of zeta values far beyond what has been researched in this field, and I use the term 

field rather liberally, field of continued study in a field where details of many of those same methods 

is not typical in the study of zeta values or what is somewhat a derivatives study of complex variables 

between the two methods. As mathematics becomes progressively more sophisticated (and complex) 

in relation to applications in various areas, including but not limited to, cryptography, quantum theory, 

and computational science, knowledge in relation to the special values of ζ(s) remains a centre of 

study and interest.  In continuing studies, Euler and Riemann similarly remain content to examine the 

study of odd numbers, the quiet and unassuming distribution of primes amongst overall integers, and 

the chaotic complexity of the complex plane. 
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