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Abstract: Melanoma remains one of the deadliest skin cancers, despite accounting for only a 

small proportion of overall skin cancer diagnoses. Although immune checkpoint inhibitors 

(ICIs) have significantly improved outcomes in advanced melanoma, nearly half of all 

patients fail to respond, highlighting the urgent need for clinically actionable biomarkers. In 

this study, we leveraged single-cell RNA sequencing (scRNA-seq) data from a publicly 

available melanoma cohort to dissect the mechanisms driving therapeutic resistance. Our 

analyses revealed a prominent enrichment of macrophages in non-responders, prompting the 

development of a macrophage-focused gene signature that was strongly associated with poor 

overall survival across multiple independent datasets, including The Cancer Genome Atlas 

(TCGA). Importantly, this signature demonstrated high predictive accuracy (AUC = 0.896) 

for identifying patients unlikely to benefit from ICIs. Functional validation using an in vitro 

co-culture model showed that M2-polarized macrophages robustly suppressed T cell 

proliferation, reinforcing their immunosuppressive role in the tumor microenvironment. 

These findings offer immediate translational relevance: the macrophage-derived gene 

signature could be incorporated into clinical workflows to guide therapeutic decision-making, 

sparing patients the financial and physical burdens of ineffective treatment. Moreover, 

targeting the immunosuppressive M2 macrophage axis may open new avenues for 

combination therapies, ultimately paving the way for more personalized and cost-effective 

management of advanced melanoma.  

Keywords: melanoma, immune checkpoint inhibitors (ICIs), macrophage, single-cell RNA 

sequencing (scRNA-seq) 

1. Introduction 

Melanoma is among the most aggressive and deadly forms of skin cancer, representing approximately 

4-5% of skin cancer cases while accounting for the majority of skin cancer–related deaths[1,2]. 

Historically, treatment options for advanced melanoma were severely limited, with traditional 

modalities such as surgical resection, chemotherapy, and radiotherapy offering only modest benefits 

and often accompanied by substantial adverse effects[3]. Chemotherapy regimens, for example, were 

plagued by a lack of tumor specificity, resulting in systemic toxicity that damaged healthy tissues, 

while radiotherapy was generally inadequate in controlling metastatic dissemination[3]. 

Consequently, patients with metastatic melanoma faced dismal five-year survival rates, often in the 

range of 5–10%, rendering the prognosis nearly hopeless and highlighting a critical unmet need for 

more effective therapeutic strategies[4]. 
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The clinical landscape of melanoma began to change dramatically with the advent of immune 

checkpoint inhibitors (ICIs). Agents such as ipilimumab, pembrolizumab, and nivolumab have 

harnessed the body’s immune system to target malignant cells, thereby revolutionizing the 

management of advanced melanoma[5]. ICIs work by blocking inhibitory pathways that normally 

restrain T cell activity, thus reinvigorating the anti-tumor immune response[5]. In several clinical 

trials, these therapies have been associated with substantial improvements in patient outcomes; some 

studies have reported increases in five-year survival rates to nearly 50% in a subset of patients—a 

remarkable improvement over the historical outcomes[6,7]. However, despite these promising 

advances, significant challenges persist. Notably, nearly half of the patients treated with ICIs do not 

exhibit a favorable clinical response[8]. This variability in treatment efficacy underscores the 

complexity of the tumor microenvironment (TME) and the need to better understand the underlying 

mechanisms driving resistance. 

A second, equally pressing issue is the financial burden imposed by immunotherapy. The high cost 

of ICIs—often exceeding $150,000 per patient annually—places these treatments well above the 

median U.S. household income of approximately $68,700[9,10]. This economic strain not only 

jeopardizes the affordability and accessibility of life-saving therapies but also results in a 

misallocation of healthcare resources when patients are subjected to expensive treatments that 

ultimately prove ineffective. The dual challenges of suboptimal response rates and prohibitive costs 

have galvanized efforts to develop predictive biomarkers that can guide clinical decision-making—

ensuring that patients most likely to benefit from ICIs are accurately identified and spared the 

financial and physical burdens of ineffective treatment. 

Recent advances in single-cell RNA sequencing (scRNA-seq) have provided a transformative lens 

through which the cellular heterogeneity of the TME can be examined[11]. This high-resolution 

technology enables the identification and characterization of individual cell populations within 

tumors, offering unprecedented insights into the complex interplay between malignant cells and the 

immune system[12]. In this context, tumor-associated macrophages (TAMs) have emerged as pivotal 

players in modulating immune responses. These cells, which can exhibit either pro-inflammatory (M1) 

or anti-inflammatory (M2) phenotypes, have been implicated in promoting an immunosuppressive 

environment that fosters tumor progression and resistance to immunotherapy [13]. 

In the present study, we sought to leverage scRNA-seq data from melanoma patients who had 

received immunotherapy, stratified by their clinical responses, to unravel the cellular underpinnings 

of therapeutic resistance[14]. We reanalyzed single-cell RNA sequencing data from melanoma 

patients treated with immune checkpoint inhibitors—originally published by Sade-Feldman et al.—

to uncover cellular drivers of therapeutic resistance[14]. Whereas previous analyses predominantly 

centered on T cell states, we focused on all types of immune cells. Our investigation revealed a 

striking enrichment of M2-polarized macrophages in tumors from non-responding patients. 

Leveraging this insight, we developed a macrophage-derived gene signature. This signature was 

significantly associated with worse overall survival in melanoma patients, as validated in TCGA 

SKCM data, where patients with higher signature scores had poorer outcomes. Finally, using custom 

ROC analysis routines on an independent dataset, we demonstrated that our gene signature reliably 

discriminates between responders and non-responders, underscoring its potential as a predictive 

biomarker for immunotherapy response. 

To functionally validate these findings, we employed an in vitro co-culture system designed to 

elucidate the impact of distinct macrophage phenotypes on T cell proliferation. THP1-derived 

macrophages were differentiated into either M1 or M2 phenotypes and subsequently co-cultured with 

CFSE-labeled Jurkat T cells. Flow cytometry analyses revealed that M2-polarized macrophages 

significantly inhibited T cell proliferation relative to M1 macrophages, thereby reinforcing the role 

of an immunosuppressive macrophage population in mediating resistance to ICIs. 
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Collectively, these findings not only shed light on the critical role of tumor-associated 

macrophages in shaping the immune landscape of melanoma but also underscore the urgent need for 

a predictive gene panel in clinical practice. By enabling the early identification of patients unlikely 

to benefit from immunotherapy, such a panel could help avert unnecessary treatment-related costs 

and improve overall patient outcomes. Ultimately, our work aims to advance personalized oncology 

by providing a robust tool that guides therapeutic decision-making and optimizes the allocation of 

healthcare resources in the treatment of melanoma. 

2. Methods 

2.1. Single-cell RNA-seq data acquisition and preprocessing 

Single-cell RNA-sequencing data from a melanoma cohort (GSE120575) were obtained through the 

Gene Expression Omnibus. Expression profiles were provided in transcript per million (TPM) format, 

with rows representing genes and columns representing single cells, accompanied by metadata 

describing patient demographics and treatment responses[14]. Data handling and subsequent analyses 

were conducted in R (version 4.3.2), using the Seurat, dplyr, ggplot2, and tidyr packages. Metadata 

were examined to remove duplicates and retain only cells present in both the TPM file and annotation. 

A Seurat object was created with these TPM values as the input count matrix (CreateSeuratObject), 

including patient-level information in the meta.data slot. 

2.2. Quality control and filtering 

Cells labeled as “Pre” or baseline in the metadata were isolated to focus on pretreatment samples. 

Quality metrics were assessed by examining the total number of detected genes (nFeature_RNA), the 

total RNA content (nCount_RNA), and the percentage of mitochondrial features (percent.mt). Violin 

plots (VlnPlot) and scatter plots (FeatureScatter) were generated to visualize outliers and potential 

shifts in quality metrics. Expression data were then normalized using the LogNormalize method 

(NormalizeData), with 10,000 as the scale factor, and 2,500 highly variable genes were identified 

(FindVariableFeatures). Patient-specific factors, such as baseline or posttreatment status, were 

regressed out during the scaling process (ScaleData). 

2.3. Dimensional reduction and clustering 

Principal component analysis (RunPCA) was performed on the highly variable genes, and the first 35 

principal components (PCs) were retained, capturing approximately 83% of total variance. Neighbor 

graphs were constructed (FindNeighbors) based on these PCs, and multiple cluster resolutions 

(ranging from 0.1 to 2.0) were evaluated with FindClusters. Uniform manifold approximation and 

projection (RunUMAP) was subsequently applied to visualize clusters, using the same PCs as input. 

Clusters were labeled according to their resolution-specific identities, and relationships to clinical 

response or sample identity were examined by projecting these variables onto UMAP plots (DimPlot). 

2.4. Marker identification and differential expression 

Cluster markers were identified by setting each clustering resolution as the active identity (Idents) 

and performing FindAllMarkers with a minimum fraction of expressed genes of 0.25 and a log2 fold-

change threshold of 0.25. Heatmaps (DoHeatmap) were generated to visualize the top 20 marker 

genes in each cluster. Differences between “Responder” and “Non-responder” cells were also tested 

(FindMarkers) to identify upregulated genes in either clinical subgroup. Specific thresholds were used 

to prioritize candidate genes, such as log2 fold-change cutoffs of 0.2 to 1.0 and adjusted p-values 

below 0.05, and these gene sets informed subsequent survival analyses. 
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2.5. Survival analyses in independent melanoma cohorts 

Gene signatures derived from the GSE120575 dataset (for example, cluster-specific markers or 

responder-enriched genes) were evaluated in additional cohorts, including The Cancer Genome Atlas 

(TCGA) SKCM and publicly available melanoma data sets (Allen phs000452). Expression data (often 

in log-transformed form) were harmonized, and matching clinical annotations were retrieved to 

enable survival modeling. Composite scores for each gene signature were computed by scaling the 

relevant genes, then averaging across each sample. Cox proportional hazards models (using the coxph 

function from the survival package) were fitted to determine the association between signature scores 

and survival outcomes, such as overall survival. Kaplan–Meier curves were generated, and log-rank 

tests were performed to compare high- and low-scoring subgroups. Custom R routines were used to 

calculate area under the curve (AUC) values and receiver operating characteristic (ROC) curves to 

evaluate classification performance for immunotherapy response. 

2.6. In vitro co-culture experimental design 

An in vitro co-culture system was developed to model the immunosuppressive features suggested by 

non-responder cell populations in the single-cell analysis. THP-1 human monocytes (ATCC) were 

cultured in RPMI-1640 with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin. Cells 

were seeded at 1×10^6 per well in 6-well plates and differentiated into macrophages by treatment 

with 100 ng/mL phorbol 12-myristate 13-acetate (PMA) for 48 hours, followed by a 24-hour rest. M1 

polarization was achieved by adding 20 ng/mL interferon-gamma (IFN-γ) and 100 ng/mL 

lipopolysaccharide (LPS), whereas M2 polarization was induced using 20 ng/mL interleukin-4 (IL-

4) and 20 ng/mL interleukin-13 (IL-13). Unpolarized macrophages (M0) were maintained without 

exogenous cytokines. 

A375 melanoma cells (ATCC) were grown in DMEM with 10% FBS and seeded (5×10^4 

cells/well) in 24-well plates. Macrophages were added at 1×10^5 cells per well, followed by Jurkat 

T cells at 1×105 per well. Jurkat T cells were labeled with 5 µM carboxyfluorescein succinimidyl 

ester (CFSE) according to manufacturer instructions, and T cell activation was induced by soluble 

anti-CD3 (1 µg/mL; OKT3) plus anti-CD28 (1 µg/mL). After 72 hours of co-culture at 37 °C with 5% 

CO₂, cells were collected for flow cytometric analysis. 

2.7. Flow cytometry and proliferation assessment 

Samples were washed, stained with a fixable live/dead dye, and blocked with a human Fc receptor 

reagent. T cells were gated by CD3 expression (PerCP/Cy5.5-anti-CD3). Flow cytometry data were 

acquired on a BD LSRFortessa instrument, collecting at least 10,000 CD3+ events per sample. CFSE 

dilution was used to measure T cell proliferation, and data were analyzed with standard flow 

cytometry software to compare Jurkat T cells in the presence of M1, M2, or M0 macrophages 

alongside A375 melanoma cells. 

2.8. Statistical analysis 

In single-cell analyses, the Wilcoxon rank-sum test was used in Seurat for differential expression, 

and Benjamini–Hochberg corrections were applied for multiple comparisons. For survival models, 

univariate Cox analyses generated hazard ratios and 95% confidence intervals, and Kaplan–Meier 

estimates were compared using log-rank tests. In the in vitro assays, differences among multiple 

experimental groups (M1, M2, M0, and control) were assessed by one-way ANOVA with post hoc 

tests, while pairwise comparisons typically employed two-tailed t-tests. Significance thresholds were 

generally set at p < 0.05, and all numerical data were reported as mean ± standard error (SE). 
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3. Results 

3.1. Comprehensive single-cell transcriptomic profiling of the melanoma tumor 

microenvironment 

Our single-cell RNA sequencing analysis of pretreatment melanoma samples provided an in-depth 

view of the tumor microenvironment (TME), revealing a highly heterogeneous landscape of immune 

cell populations. Unsupervised clustering followed by UMAP dimensionality reduction allowed us 

to visualize distinct cellular clusters based on their transcriptomic profiles (Fig. 1A). High expression 

levels of the pan-leukocyte marker PTPRC confirmed that all cells analyzed were of hematopoietic 

origin, while differential expression of markers such as ITGAM and ITGAX helped to demarcate 

clusters corresponding to monocytes and macrophages (Fig. 1B). In parallel, robust expression of 

CD3G delineated the T cell compartment, and additional markers like CD19 and CD1C identified B 

cells and dendritic cells, respectively (Fig. 1B). Furthermore, the expression of CSF1R provided 

additional resolution in defining macrophage subsets (Fig.1B). Within the T cell compartment, 

markers including CD8A, CD4, and immune checkpoint genes (PDCD1, CD69, CTLA4) further 

subdivided T cells into functionally distinct subpopulations (Fig. 1B). When cells were color-coded 

according to individual patient samples, the even distribution observed across the UMAP projection 

demonstrated that the clustering was robust and reproducible, independent of sample-specific 

variations (Fig.1C). This detailed cellular atlas lays the groundwork for understanding the dynamic 

interactions within the TME and provides a crucial baseline for subsequent analyses of 

immunotherapy resistance mechanisms. 

3.2. Differential immune cell composition in responders versus non-responders 

Building on the comprehensive mapping of the TME, we next compared the immune landscapes of 

melanoma patients who responded to immunotherapy with those who did not. UMAP visualization 

of the single-cell transcriptomic data from both cohorts revealed distinct segregation of immune cell 

clusters, with clear differences in the relative proportions of key cell types (Fig. 2A-B). In non-

responders, clusters characterized by high expression of macrophage-associated markers such as 

CD14, C1QA, C1QC, CCL2, VSIG4, FCN1, and MARCO were notably enriched, suggesting an 

expansion of immunosuppressive macrophage (M2 macrophage) (Fig. 2C). In contrast, responders 

displayed a more robust cytotoxic T cell signature, evidenced by high expression of genes including 

GZMB, PRF1, GZMH, GZMK, GZMA, and CCL5, indicative of enhanced antitumor immunity (Fig. 

2C). Additional clusters corresponding to naive/central memory T cells (expressing SELL and 

GPR183), proliferating cells (highlighted by UBE2C expression), and B cells (marked by 

immunoglobulin genes such as IGLC3, IGHV3-30, IGLC1, TCL1A, IGKC, IGHM, IGHG1, with 

supporting expression of MS4A1 and VPREB3) further defined the immune landscape(Fig. 2C). The 

differential enrichment of these cell types between responders and non-responders underscores the 

possibility that an immunosuppressive TME, dominated by specific macrophage subsets, may 

contribute to the lack of clinical benefit from immune checkpoint inhibitors. 

Moreover, the data suggest differential enrichment of specific immune cell types between 

responders and non-responders. The variations in marker gene expression patterns, especially within 

the monocyte/macrophage and T cell compartments, point toward potential cellular mechanisms 

underlying immunotherapy resistance. For instance, the heightened expression of macrophage-

associated markers in non-responders may contribute to an immunosuppressive microenvironment, 

whereas a more robust cytotoxic T cell signature in responders could underlie more effective 

antitumor immunity. 
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In summary, Figure 2 not only confirms the cellular heterogeneity of the melanoma immune 

microenvironment but also highlights key differences in immune cell composition and gene 

expression between patients with distinct clinical responses. These findings provide a foundation for 

further investigation into predictive biomarkers and the cellular basis of immunotherapy resistance in 

melanoma. 

 

Figure 1: Immune cell landscape and assessment of batch effects in melanoma tumors. (a) UMAP 

projection of single cells from melanoma tumors, illustrating the overall cellular heterogeneity. (b) 

Feature plots displaying the expression patterns of key immune markers (e.g., PTPRC, ITGAM, 

ITGAX, CD3G, CD19, CD1C, CSF1R) across the UMAP space. (c) UMAP colored by sample ID, 

demonstrating minimal batch effects across different patient samples 
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Figure 2: Differential immune composition between responder and non-responder patient groups. (a) 

UMAP visualization of immune cells grouped by patient clinical response, distinguishing responders 

from non-responders. (b) Stacked bar plot showing the contribution of each patient group to the 

identified immune cell clusters, highlighting differences in cellular composition. (c) Heatmap of 

marker genes for each immune cell cluster, defining the transcriptional identity of the subsets 
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3.3. Prognostic and predictive value of a macrophage-derived gene signature 

To assess the clinical relevance of our observations, we derived a macrophage-associated gene 

signature from the single-cell data and evaluated its impact on patient outcomes. Kaplan–Meier 

survival analysis revealed that melanoma patients with high expression of the macrophage gene 

signature experienced significantly reduced overall survival compared to those with low expression 

levels (p = 0.0044) (Fig. 3A). This finding indicates that a macrophage-enriched TME, which likely 

reflects an immunosuppressive milieu, is associated with adverse clinical outcomes. Complementing 

the survival data, receiver operating characteristic (ROC) analysis demonstrated that the gene 

signature has a high predictive accuracy for immunotherapy response, with an area under the curve 

(AUC) of 0.896 (Fig. 3B). This strong discriminatory power suggests that the macrophage signature 

can serve as a reliable biomarker to stratify patients based on their likelihood of responding to immune 

checkpoint inhibitors, thereby potentially guiding treatment decisions and sparing non-responders 

from ineffective, costly therapies. 

Collectively, these findings indicate that the macrophage gene signature not only serves as a 

prognostic indicator of overall survival but also holds promise as a predictive biomarker for 

immunotherapy efficacy in melanoma patients. 

 

Figure 3: Prognostic and predictive performance of the macrophage-derived gene signature. (A) 

Kaplan–Meier survival analysis comparing melanoma patients with high versus low expression of 

the macrophage-derived gene signature; high signature scores correlate with significantly worse 

overall survival (p = 0.0044). (B) ROC curve analysis demonstrating the signature’s strong predictive 

accuracy for immunotherapy response, with an AUC of 0.896 

3.4. Functional validation of macrophage polarization on T cell proliferation 

To elucidate the functional implications of macrophage polarization on T cell activity, we performed 

in vitro co-culture experiments using Jurkat T cells, A375 melanoma cells, and THP-1-derived 

macrophages differentiated into either M1 or M2 phenotypes. Baseline T cell proliferation, measured 

in the Jurkat+A375 co-culture, was 32.1%. Notably, when M1 macrophages were included in the co-

culture, T cell proliferation increased substantially to 52.9%, indicating that pro-inflammatory 
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macrophages can enhance T cell responses (Fig. 4). In stark contrast, the presence of M2-polarized 

macrophages resulted in a marked decrease in T cell proliferation, with a proliferation rate dropping 

to only 10.2% (Fig. 4). These functional data validate the transcriptomic findings by demonstrating 

that M2 macrophages impose a strong inhibitory effect on T cell proliferation, thereby contributing 

to an immunosuppressive TME. This finding provides a mechanistic explanation for the observed 

resistance to immunotherapy in patients with a high macrophage gene signature and further highlights 

the therapeutic potential of targeting macrophage polarization to improve clinical outcomes in 

melanoma. 

 

Figure 4: Impact of macrophage polarization on T cell proliferation in co-culture assays. Jurkat T 

cells were co-cultured with A375 melanoma cells under three conditions: without macrophages 

(Jurkat+A375), with M1-polarized macrophages (Jurkat+M1+A375), and with M2-polarized 

macrophages (Jurkat+M2+A375). Flow cytometric analysis using CFSE-FITC staining revealed 

significant differences in T cell proliferation, with statistical tests confirming that M1 macrophages 

enhance, while M2 macrophages suppress, T cell proliferation relative to the control 

Collectively, these results reveal that the melanoma TME is highly heterogeneous, with specific 

immune cell compositions correlating with patient response to immunotherapy. The enrichment of 

immunosuppressive macrophages in non-responders, coupled with the strong prognostic and 

predictive performance of the macrophage-derived gene signature, underscores the critical role of 

TAMs in mediating resistance to immune checkpoint blockade. Furthermore, our functional assays 

substantiate the inhibitory effects of M2 macrophages on T cell proliferation, suggesting that 
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modulation of macrophage polarization could be a promising strategy to enhance the efficacy of 

immunotherapy in melanoma. 

4. Discussion 

These results underscore the intricate nature of the tumor microenvironment in melanoma, where 

diverse immune populations dynamically interact to influence therapeutic outcomes[15,16]. By 

integrating single-cell transcriptomics, survival analyses, and functional assays, we demonstrate that 

macrophages—particularly those adopting an M2-like phenotype—play a decisive role in mediating 

immunotherapy resistance. In non-responder samples, the increased prevalence of macrophage-

associated genes aligns with prior evidence suggesting that tumor-associated macrophages (TAMs) 

foster an immunosuppressive milieu by secreting anti-inflammatory cytokines, expressing checkpoint 

ligands, and supporting tumor cell survival[17]. Our in vitro experiments corroborate these 

observations, as M2-polarized macrophages markedly dampened T cell proliferation, while M1-

polarized macrophages enhanced it. This functional distinction highlights the plasticity of 

macrophages and reinforces the idea that reprogramming them toward an M1 phenotype could 

augment T cell–mediated tumor clearance[18]. 

Beyond clarifying the immunosuppressive mechanisms within the melanoma microenvironment, 

our study introduces a macrophage-derived gene signature with significant prognostic and predictive 

utility. High expression of this signature correlated with worse overall survival in large patient cohorts, 

including The Cancer Genome Atlas, and it accurately distinguished responders from non-responders 

to immune checkpoint inhibitors with an area under the curve of 0.896. These findings advance the 

notion that macrophage infiltration and polarization status are not merely bystanders but active 

contributors to treatment resistance, underscoring the need for biomarkers that capture this dimension 

of the immune landscape[19]. From a clinical perspective, implementing such a biomarker could 

optimize patient stratification, directing expensive and potentially toxic therapies toward individuals 

most likely to benefit. The financial burden of immunotherapy—often exceeding $150,000 annually 

per patient—magnifies the importance of accurate predictive tools to avert avoidable costs and 

mitigate the strain on healthcare systems. 

Our results also resonate with the broader body of literature on TAMs in solid tumors, where high 

macrophage density frequently correlates with poor outcomes. The novelty here lies in leveraging 

single-cell resolution data, which allowed us to pinpoint specific genes driving macrophage-mediated 

immunosuppression and to validate their biological effects in vitro. This level of detail provides a 

clearer roadmap for developing combination therapies. For instance, agents that target macrophage 

recruitment or block key immunosuppressive pathways—such as CSF1R or chemokine receptors—

could be paired with checkpoint blockade to enhance antitumor immunity[20]. The capacity of M1 

macrophages to support T cell activation in our co-culture assays further supports this combinatorial 

approach, as tipping the M1/M2 balance may help overcome resistance that persists despite T cell 

reinvigoration[21]. 

Nevertheless, certain limitations must be acknowledged. First, our analyses relied on publicly 

available datasets, and prospective validation in larger, more diverse cohorts is necessary to solidify 

the clinical applicability of the macrophage signature. Second, although the THP-1 model is a 

valuable tool for macrophage differentiation studies, patient-derived macrophages may exhibit 

unique transcriptional and functional traits that differ from immortalized cell lines. Additional in vivo 

work could illuminate how macrophages interact with other immunosuppressive cell types, such as 

regulatory T cells and myeloid-derived suppressor cells, in shaping the tumor microenvironment. 

Moreover, melanoma is a genetically heterogeneous disease, and integrating our signature with 

genomic features (e.g., BRAF, NRAS mutations) or tumor mutational burden assessments could 

further refine its predictive power[22]. 
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Despite these caveats, the data presented here substantially advance our understanding of how 

TAMs contribute to immunotherapy resistance in melanoma and emphasize the translational potential 

of a macrophage-focused biomarker. By pinpointing patients unlikely to respond to checkpoint 

blockade, such a signature would not only guide therapeutic decisions but also encourage the 

development of macrophage-targeted agents to be tested in combination with ICIs. As precision 

oncology continues to evolve, the integration of single-cell technologies, functional validation, and 

robust clinical studies will be critical to unlocking more durable and cost-effective treatment options 

for patients with advanced melanoma. 

5. Conclusion 

In conclusion, our study demonstrates that a macrophage-derived gene signature is a powerful 

predictor of immunotherapy resistance and overall survival in melanoma patients. By integrating 

single-cell transcriptomic analyses, survival modeling, and functional in vitro assays, we have 

elucidated the critical role of tumor-associated macrophages—particularly the immunosuppressive 

M2 phenotype—in shaping the tumor microenvironment and hindering effective T cell–mediated 

antitumor responses. These findings not only advance our understanding of the cellular mechanisms 

underlying treatment failure but also underscore the potential of this signature as a valuable biomarker 

for personalized therapeutic strategies. Implementing such predictive tools could improve patient 

stratification, optimize resource allocation, and foster the development of combination therapies that 

target macrophage-mediated immune suppression, ultimately paving the way for more effective and 

cost-efficient treatments in advanced melanoma. 
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