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Abstract: Signal-to-noise ratio (SNR) is a critical determinant of image quality and diagnostic 

utility in Magnetic Resonance Imaging (MRI). Fourier-based techniques offer 

computationally efficient methods to optimize SNR without extending scan duration or 

requiring any hardware upgrades in some way. This review systematically analyzes and 

compares six primary Fourier-based SNR optimization methods: (1) frequency-domain 

filtering, (2) k-space manipulation, (3) spectral subtraction, (4) coil combination, (5) 

compressed sensing, and (6) transform-domain denoising. Each method is discussed 

regarding its underlying mathematical principles and practical implementation, and 

quantitative and qualitative effectiveness is demonstrated, as reported in some representative 

reviews. Results indicate substantial SNR improvements, often exceeding 40%, accompanied 

by enhanced anatomical clarity and contrast preservation. Among the reviewed techniques, 

spectral subtraction, optimal coil combination, and compressed sensing stand out for their 

significant SNR gains without compromising spatial resolution. The discussion also 

highlights trade-offs, such as balancing noise reduction against resolution and adaptability 

under varying MRI conditions. The essay concludes by emphasizing Fourier-based 

approaches' ongoing relevance and potential, particularly when integrated with emerging 

computational strategies such as artificial intelligence. Future developments promise 

advancements in MRI image quality, patient throughput, and diagnostic accuracy. 

Keywords: Image reconstruction, Noise reduction, Magnetic image Resonance 

1. Introduction 

Magnetic Resonance Imaging (MRI) is renowned for its exquisite soft-tissue contrast, but the quality 

of an MR image is limited by its signal-to-noise ratio (SNR). SNR in MRI represents the strength of 

the actual signal (from tissue) relative to the background noise. High SNR images reveal fine 

anatomical details and subtle pathologies, whereas low SNR images appear grainy and can obscure 

essential findings. Consequently, there is strong motivation to optimize SNR through algorithmic 

techniques, ensuring that as much proper signal as possible is preserved and noise is 

suppressed without slower imaging.  

In MRI, the raw data are collected into the Fourier domain (k-space), the key approach for many 

SNR enhancement strategies. Noise in MRI k-space is typically uncorrelated and has uniform power 

across frequencies. Frequency-domain filters can exploit this property. For instance, applying a low-

pass filter or apodization in k-space can reduce high-frequency noise. Such filtering is conceptually 

like in CT reconstructions [1].   
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An early MRI study showed that appropriate filtering of 2D Fourier data yields images with a more 

uniform noise texture closer to ideal white noise, which is preferable for human hearing [1]. Modern 

implementations of k-space filtering, like the Hamming or Gaussian filters, continue to boost SNR in 

fast MRI sequences. An example of Fourier-based SNR optimizations involves parallel imaging 

techniques, such as accelerated scans using multiple coil outputs. Here, mathematical algorithms in 

the Fourier domain can help reclaim SNR, and penalties are involved due to data reduction.  

A notable approach is the optimal coil combination method. Instead of a simple sum-of-squares of 

coil images, one can combine coil data by weighting them based on coil sensitivities and noise 

correlations [2]. This effectively maximizes SNR for each pixel and yields a more uniform image. 

Algorithms like the adaptive combine (a subspace-based coil combine) operate on Fourier-

transformed data from each coil to find the best composite image [2]. By doing so, they improve SNR 

through more innovative use of frequency-domain information.   

Furthermore, compressed sensing (CS) uses iterative Fourier-domain reconstruction 

to denoise through sparsity constraints. CS-MRI uses the fact that MRI images often have sparse 

representations (in wavelet domains or gradient domains) and fills in missing k-space points in a way 

that eliminates noise-like incoherent artifacts. The result is faster imaging with SNR increases. In 

other words, this is an SNR optimization when time is limited. Once an image is reconstructed, post-

processing algorithms can further enhance SNR, for instance, Wavelet-based denoising, where 

wavelets can be seen as a multi-scale extension of Fourier, and thresholding wavelet coefficients 

corresponds to removing noise frequencies while keeping important image features [3].   

Techniques like wavelet shrinkage have demonstrated the ability to boost SNR in MRI images 

substantially [4]. For instance, a wavelet-Radon algorithm specifically targeted the Rician noise in 

low-intensity regions by operating in a transformed domain, leading to cleaner images with preserved 

edges [3].   

More recently, deep learning denoising has improved. Deep neural networks can be trained to 

recognize and remove noise, learning a content-aware optimal frequency filter. These data-driven 

approaches have reported impressive SNR improvements, doubling the number of averages in a scan 

[5].  

The significance of optimizing SNR in MRI cannot be overstated. Higher SNR improves images' 

visual clarity and reliability in quantitative analyses. Importantly, algorithmic SNR enhancement can 

enable lower-field MRI systems or faster imaging protocols to achieve diagnostic-quality results [6].  

This essay will delve into the Fourier-based and related algorithms developed to push MRI's SNR 

to its limits. The paper examines evidence of the effectiveness of different algorithms and discusses 

their trade-offs. With these, the MRI community expects to move closer to the ideal of higher SNR 

imaging, maximizing the information content that MRI can provide.  

2. Literature review 

This review section will summarize the key methods, including frequency-domain filtering, k-space 

splicing, spectral noise subtraction, optimal multi-coil combination, compressed sensing 

reconstructions, and transform-domain denoising (e.g., using Fourier or DCT transforms). 

 𝑆𝑁𝑅 =  
𝜇𝑆

𝜎𝑁
 (1) 

Where 𝜇𝑠 is the mean signal intensity and 𝜎𝑛 is the standard deviation of noise, plays a pivotal role 

in determining image quality. This section reviews Fourier-based techniques for SNR optimization, 

focusing on their mathematical interpretation and signal-processing strategies [1]. 
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2.1. Frequency-domain filtering 

Frequency-domain filtering aims to suppress noise in k-space by attenuating high-frequency 

components, assuming that noise is spectrally flat (white) while signal energy is concentrated in low 

frequencies. The typical filtering operation in the Fourier domain can be represented as 

 �̃�(𝑢, 𝑣) = 𝐻(𝑢, 𝑣) ×  𝐹(𝑢, 𝑣) (2) 

Where F(u, v) is the 2D Fourier transform of the original image, H(u, v) is the filter function (e.g. 

Gaussian), and �̃�(u, v) is the filtered frequency representation. The corresponding denoised image is 

recovered using the inverse Fourier transform: 

 𝑓(𝑢, 𝑣) =  𝐹−1[�̃�(𝑢, 𝑣)]  (3) 

The choice H(u, v) of dictates the trade-off between resolution and noise suppression. For example, 

a Gaussian filter in k-space: 

 𝐻(𝑢, 𝑣) = exp (−
𝑢2+𝑣2

2𝜎2 ) (4) 

2.2. K-space manipulation and gain splicing 

An innovative approach to optimizing SNR involves adjusting the receiver gain during acquisition to 

emphasize weaker k-space signals. Let represent k-space acquired with gain factor 𝑔𝑘, such that: 

 𝐹𝑘(𝑢, 𝑣) =  𝑔𝑘 𝐹(𝑢, 𝑣) + 𝑁𝑘(𝑢, 𝑣) (5) 

Where 𝑁𝑘(𝑢, 𝑣) is the noise introduced at gain 𝑔𝑘. In k-space splicing, data from different gain 

levels are normalized: 

 𝐹�̃�(𝑢, 𝑣) =  
𝐹𝑘(𝑢,𝑣)

𝑔𝑘
 (6) 

These normalized components are then combined to construct a final composite k-space: 

 𝐹𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒(𝑢, 𝑣) =  ∑ 𝜔𝑘(𝑢, 𝑣)𝐾
𝑘=1 ×  𝐹�̃�(𝑢, 𝑣) (7) 

Where 𝜔𝑘(𝑢, 𝑣) are spatial weights ensuring smooth transitions between regions. This method 

increases the dynamic range of signal acquisition, especially in peripheral k-space, leading to 

improved SNR after reconstruction [7]. 

2.3. Spectral subtraction 

Spectral subtraction denoising (SSD) operates on the assumption that noise power can be estimated 

and subtracted in the frequency domain. Given a noisy signal spectrum 𝑃𝑌(𝑢, 𝑣) , the noise power 

spectrum 𝑃𝑁(𝑢, 𝑣) is estimated, and the signal power is obtained by: 

 𝑃𝑋(𝑢, 𝑣) =  max (𝑃𝑌(𝑢, 𝑣) − 𝑃𝑁(𝑢, 𝑣), 0) (8) 

The denoised spectrum can then be reconstructed as: 

 �̃�(𝑢, 𝑣) = √𝑃𝑋(𝑢, 𝑣) exp (𝜑𝑌(𝑢, 𝑣)) (9) 

Where 𝜑𝑌(𝑢, 𝑣) is the original phase of the noisy spectrum. This method retains phase while 

suppressing noise amplitude, preserving structural detail in the reconstructed image [6]. 
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2.4. Optimal coil combination 

In parallel MRI, multi-channel receives coils provide independent measurements, each with its own 

sensitivity 𝑠𝑖(𝑥, 𝑦) and noise covariance ∑ 1𝑖𝑗  . The optimal linear combination of N coil 𝑓𝑗(𝑥, 𝑦) to 

maximize SNR is: 

 𝑓𝑜𝑝𝑡(𝑥, 𝑦) =  
∑ 𝑠𝑖(𝑥,𝑦) ∑ 𝑓𝑗(𝑥,𝑦)−1

𝑖,𝑗=1
𝑁
𝑖,𝑗=1

√∑ 𝑠𝑖(𝑥,𝑦) ∑ 𝑠𝑗(𝑥,𝑦)−1
𝑖,𝑗=1

𝑁
𝑖,𝑗=1

 (10) 

This formulation yields the maximum SNR image estimate under Gaussian noise assumptions.  

2.5. Compressed sensing and sparse reconstruction 

Compressed sensing (CS) leverages the sparsity of MRI images in a transform domain (e.g., wavelets, 

total variation) to reconstruct from under-sampled k-space: 

 max
𝑥

‖𝜓𝑥‖  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝐴𝑥 − 𝑦‖ ≤ 𝜀 (11) 

Where x is the image, y is the under sampled k-space data, A is the encoding operator, and 𝜀 

accounts for noise.  

This formulation reduces aliasing and incoherent artifacts, effectively improving SNR in the 

reconstructed image without needing full data [8]. 

2.6. Transform-domain denoising 

Transform-based denoising methods, such as wavelet shrinkage or discrete cosine transform (DCT) 

filtering, transform the image to a domain where signal and noise are more separable. For instance, 

in wavelet threshold: 

 𝜔𝑖,�̃� =  {
𝜔𝑖,𝑗 −  𝜆 ∙ 𝑠𝑖𝑔𝑛(𝜔𝑖,𝑗), 𝑖𝑓|𝜔𝑖,𝑗| > 𝜆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

where 𝜔𝑖,𝑗  are wavelet coefficients, 𝜆  is a noise-dependent threshold, and 𝜔𝑖,�̃� are denoised 

coefficients. The image is reconstructed via inverse wavelet transform: 

 𝑓(𝑥, 𝑦) =  𝑊−1[𝜔𝑖,�̃�] (13) 

This approach suppresses noise-dominated components while preserving meaningful structures, 

especially in high-frequency image regions [6]. 

3. Methodology 

Consider the literature review, which followed a systematic approach to identify and analyze relevant 

studies on Fourier-based SNR optimization in MRI. Now, this section will search scholarly databases 

(PubMed, IEEE Xplore, and Google Scholar) using keywords such as "MRI SNR optimization," 

"Fourier transform denoising," "k-space SNR," "spectral subtraction MRI," and "compressed sensing 

MRI."  

The search was focused on high-impact conference papers from roughly the last 20 years to capture 

recent advances. From an initial pool of over 100 papers, this paper filtered down to about 20 core 

studies that explicitly employed frequency-domain or transform-domain techniques to improve the 

SNR of MRI. The selected articles were then reviewed in detail and grouped into thematic categories 

reflecting the different Fourier-based strategies. The following section will compile each category's 

key findings and qualitative outcomes, such as whether a given method preserved finer details or 
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introduced blurring or anti-facts. This comparative analysis enabled us to identify trade-offs and the 

level of enchantment in optimizing MRI SNR, as summarized in the review. 

4. Results 

The selected studies report improvements in MRI SNR using a range of Fourier-based techniques. 

Both quantitative gains and qualitative enhancements are observed. Below, we summarize these 

results by method category, and Table 1 provides a comparative overview of each technique’s key 

outcomes. 

Table 1: Summary of Fourier-based SNR optimization methods and improvements across studies 

Algorithm (Category) Main Mechanism SNR improvements Qualitative Effects 

Frequency-domain 
Cross-correlate two images’ Fourier 

spectra to estimate true signal 

3.24→6.03 with 

resolution loss ~26% 

[9] 

Slight blurring, noise greatly 

reduced with details largely 

preserved. 

K-space manipulation 

Multiple acquisitions with different 

receiver gains for center vs. periphery 

of k-space, followed by normalized 

splicing k-space, followed by 

normalized splicing 

Increased by 5~13% 

[7] 

Clearer visualization of low-signal 

details; more uniform noise 

distribution (no resolution loss). 

Spectral subtraction 

(SSD) 

Subtract estimated noise power 

spectrum from each coil’s k-space 

data prior to image reconstruction 

Increased up to 45% 

(40% in vivo) [8] 

Smoother images: edges and fine 

structures maintained, with 

improved detail vs. diffusion 

filtering [8]. 

Adaptive coil 

combination (Coil 

signal fusion) 

Per-pixel weighted combine of multi-

coil images, matched-filter to 

maximize local SNR 

Increased by sum-of-

squares of baseline 

[2] 

More uniform image intensity 

(reduced coil bias); better tissue 

contrast than SoS combine [2] 

Subspace coil 

combination (Coil 

signal fusion) 

MMSE-based optimal coil weighting 

via subspace decomposition 

7 times higher vs. 

conventional coil 

combines [11] 

Virtually no intensity 

inhomogeneity; high-contrast, very 

low-noise images across FOV. 

Sparse MRI 

(Compressed sensing) 

Random under sampling of k-space 

with iterative recon enforcing wavelet 

sparsity (ℓ1-norm) 

+41–42 dB (PSNR) 

under 25% data [10]; 

Almost no aliasing artifacts; sharp 

edges and textures preserved 

(similar quality to fully sampled 

image) [10]. 

Adaptive CS 

(Compressed sensing) 

Optimized k-space sampling pattern 

with patch-based dictionary sparsity 

in reconstruction 

+7 dB PSNR VS non-

adaptive CS [11] 

Noticeably cleaner reconstructions: 

suppressed incoherent alias noise; 

subtle features recovered despite 

heavy under sampling [11]. 

Wavelet packet 

denoising (Transform-

domain) 

Wavelet packet thresholding 

(performed on complex MRI data 

before magnitude calculation) 

increased 

significantly vs. no 

filtering [12] 

less blurring and enhanced low-

contrast detail vs. standard 

magnitude-image denoising [12] 

BM4D nonlocal filter 

(Transform-domain) 

4D block-matching filter (frames 

similar patches, transforms to 

denoise, handles Rician noise via pre-

stabilization) 

Reported to 

maximally improve in 

volumetric MRI [6] 

Yields very smooth yet detailed 

images; noise virtually eliminated 

without over-smoothing [6] 

5. Discussion 

Despite encouraging improvements, the current Fourier-based SNR optimization methods and the 

literature studying them have several limitations. A recurring theme is the trade-off between noise 

suppression and image resolution. Some reviewed papers quantified this trade-off; for example, low-

pass filtering did not improve the frequency-dependent SNR because it attenuates signal and noise 

equally [1]. Spectral subtraction was noted to preserve resolution better [8], but it, too, assumes noise 

can be characterized and subtracted perfectly. Another limitation is the method's applicability across 

different conditions. Denoising algorithms often require tuning parameters that are dataset-specific, 

such as threshold levels and filter shapes, and their performance can degrade on different anatomies 

or scanner settings. For instance, wavelet denoising algorithms that worked well for brain images 
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might need re-optimization for body MRI due to different texture statistics. Likewise, compressed 

images that yield excellent results for angiography might struggle for abdominal imaging due to 

different sparsity characteristics. Another concern is the dependency on specific data types or 

hardware. Coil combination methods obviously require multi-coil data; the SNR gains disappear if 

only a single coil is available. Some advanced k-space techniques assume consistent phase 

information, like partial Fourier, which assumes conjugate symmetry from a homogenous object, 

which may not hold if motion or field inhomogeneity is present. Moreover, some methods demand 

highly computational resources or expertise that are unavailable in all clinics. For example, iterative 

CS or Artificial Intelligence (AI) reconstructions can be time-consuming or require GPU acceleration, 

making them harder to deploy for every patient in a busy hospital setting. Finally, a limitation in the 

research field is that each technique is often developed and evaluated in isolation. There is a lack of 

head-to-head comparisons under standardized conditions. However, our Results included a 

comparative table of 10 papers. Differences in datasets and metrics make it hard to declare an overall 

“winner.” The community would benefit from more unified benchmarks to assess the best SNR 

optimization approaches.  

In real-world applications, a key consideration is how these Fourier-based SNR optimization 

methods perform under these real-world MRI constraints. During clinical imaging, scan time is often 

at a premium. In scenarios where scan time cannot be extended, a combining strategy is applied. 

Multi-coil receiver hardware is ubiquitous, which makes coil combination techniques immediately 

applicable. Phased-array coil combination is standard in virtually all clinical MRI protocols; it 

directly increases SNR by pooling signals from multiple coils covering the region of interest. Field 

strength is another crucial factor. At high field (3T and above), the baseline SNR is high, so mild 

Fourier filtering or denoising can be enough to suppress noise without visibly degrading detail. 

Conversely, intrinsic SNR is poor in a low field (smaller than 0.5T), making advanced SNR recovery 

techniques helpful and often necessary. The literature suggests that sophisticated reconstruction 

methods can salvage image quality in low-field settings where conventional Fourier methods fail. For 

example, one study of a 6.5 mT MRI showed that a deep learning reconstruction (which operates 

partly in the Fourier domain) improved SNR 1.5 to 4.5 times over standard Fourier reconstruction 

[13].  Methods like spectral subtraction and transform-domain denoising are generally compatible 

with existing workflows, but hardware limitations also determine which techniques are feasible. 

Ultimately, the clinical applicability of these methods is about choosing the right tool for the 

constraint at hand: for faster scans, compressed sensing or parallel imaging plus denoising is effective; 

for low-field or low-SNR cases, heavy-duty Fourier-domain reconstructions (possibly learning-based) 

can recover lost SNR; for high-detail diagnostic needs, one would apply only gentle filtering to avoid 

blurring critical pathology. However, in resource-limited or portable MRI setups (e.g., low-field, few 

coils), one cannot rely on coil count or brute-force averaging to boost SNR.  

Rather than viewing the various Fourier-based SNR enhancement methods in isolation, it is 

insightful to consider how they can complement each other within an imaging pipeline. These 

techniques can be combined synergistically to capitalize on their strengths while offsetting individual 

weaknesses. A pragmatic approach is to use multiple tools in concert: for example, employ hardware-

based enhancements (coils, fast sequences) and then apply software-based enhancements (such as 

filtering, subtraction, CS) as needed. For example, the multi-coil acquisition provides an initial SNR 

boost via hardware; on top of that, one could apply spectral subtraction or transform-domain 

denoising to each coil’s data before a combination [8]. This pairing leverages the coil array’s SNR 

gain and the algorithm’s noise suppression, resulting in an image superior to either technique alone. 

Another complementary approach is using compressed sensing with spatial/frequency filtering. 

Compressed sensing reconstructions inherently include a form of denoising through regularization, 

but residual noise can still be present, especially at higher acceleration factors. A gentle Fourier-
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domain filter or a wavelet denoiser applied after CS reconstruction can clean up this residual noise 

floor.  

Conversely, one could integrate the denoising into the reconstruction. For instance, some 

techniques perform an initial k-space noise filtering (to stabilize the inversion problem) followed by 

image-domain refinement for artifact removal. The idea is to address noise at multiple stages: remove 

high-frequency noise early on, then correct any blurring or artifacts with an image-domain process. 

Such multi-stage pipelines can yield spotless yet sharp images, effectively combining the benefits of 

frequency filtering and spatially adaptive denoising. This complementary use of techniques is likely 

the path forward for pushing MRI image quality to new heights under practical constraints. The 

advent of machine learning would further enable the integration of methods. Deep learning models 

can be trained to simulate Fourier-based operations to apply an optimal k-space filter and image-

domain enhancement in a constructed model. A recent trend is AI-driven reconstruction frameworks 

that take raw k-space data and produce high-SNR images by learning from examples. These often 

incorporate the Fourier transform as a layer or use knowledge of k-space in the network architecture, 

merging data-driven learning with physical modeling [5]. For instance, one could envision a 

comprehensive workflow: advanced k-space sampling (like radial or spiral trajectories to inherently 

average noise), plus parallel imaging (to cut time), then Fourier-domain noise subtraction on each 

coil, followed by a multi-coil combine, and finally a transform-domain cleanup (wavelet or AI-based) 

on the reconstructed image. 

6. Conclusion 

SNR plays a key role in determining the quality and usefulness of MRI images. A higher SNR means 

more explicit images and more accurate diagnoses. This review has shown that many Fourier-based 

methods can boost SNR effectively. These improvements do not require more advanced hardware or 

longer scan times. Instead, they rely on more innovative ways of processing the data. Some of the 

most effective techniques include k-space filtering, combining signals from multiple coils, removing 

unwanted frequency components, using compressed sensing, and applying denoising in the transform 

domain. Each method brings its advantages and can be adapted to different clinical needs. Examples 

include filtering in k-space to remove unwanted noise and combining signals from multiple coils to 

strengthen the overall signal. Other methods involve spectral subtraction, which reduces noise by 

targeting specific frequency ranges, and compressed sensing, which reconstructs images clearly from 

fewer measurements. Finally, transform-domain denoising eliminates noise directly from the 

transformed image data. When applied appropriately, these methods improve image clarity imaging 

construction. 

Fourier-based methods make Fourier transforms not just a mathematical tool but also an SNR 

optimization technique grounded in the Fourier domain. Importantly, these algorithms enable 

enhancements in image quality without altering scan parameters or requiring new hardware, which is 

particularly valuable in settings where accessing cutting-edge equipment is limited. AI with Fourier-

domain processing is one of the most promising avenues for future research. AI-driven reconstruction 

models can dynamically learn and optimize noise suppression, tailoring filtering strategies to specific 

anatomy, scan types, or acquisition settings.  

In clinical practice, the goal is to improve image quality and complete the process rapidly without 

introducing artifacts or bias. To that end, future development should focus on creating robust, 

generalizable algorithms that perform well across various scanners and imaging protocols, have 

tangible benefits in diagnosis, and further improve patient care. 

In conclusion, optimizing MRI's SNR through Fourier-based algorithms is a mature but still 

evolving field. These methods enable cleaner, sharper images while reducing the acquisition time. As 

technology progresses, combining classical signal processing and intelligent computation will 
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continue to enhance MRI's power and accessibility, ultimately leading to better imaging outcomes 

across a broad range of clinical environments. 
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