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Abstract: Pneumonia, a common health concern today, requires early and accurate diagnosis. 

Chest X-ray examinations play a critical role in the early detection of pneumonia. To enhance 

diagnostic accuracy, this study utilizes a deep learning-based convolutional neural network 

(CNN) model, trained on a dataset of 5,216 chest X-ray images obtained from pediatric 

patients aged 1-5 years at Guangzhou Women and Children's Medical Center. Among these, 

3,875 images show signs of pneumonia and 1,341 images are normal, serving as the training 

and testing data for the model. By incorporating Dropout techniques and Batch Normalization 

methods, the model’s robustness and generalization ability were significantly improved. 

Experimental results demonstrate that the model achieves a diagnostic accuracy of 97.83%, 

which will effectively alleviate physicians’ workload and holds substantial clinical 

application value. 

Keywords: Medical Image Classification, Convolutional Neural Network, Chest X-ray 

Pneumonia Diagnosis 

1. Introduction 

Pneumonia, a respiratory disease that poses a significant threat to public health globally, necessitates 

early and accurate diagnosis to reduce patient mortality. According to research published in The 

Lancet, pneumonia accounts for over 250 million medical visits annually. Chest X-ray imaging, due 

to its accessibility and low cost, has become a primary diagnostic tool for pneumonia. However, two 

major challenges persist: (1) Pneumonia lesions exhibit diverse morphologies and high heterogeneity 

in distribution; (2) There is an imbalance in medical resource allocation—primary healthcare 

institutions lack specialized physicians, while tertiary hospitals must process thousands of images 

daily. Traditional manual diagnostic approaches are increasingly inadequate for meeting the growing 

demand for image analysis. 

In recent years, convolutional neural networks (CNNs) based on deep learning have demonstrated 

remarkable potential in medical image analysis. Classical models such as ResNet and DenseNet have 

achieved over 90% accuracy in pulmonary disease detection tasks. This study constructs a CNN 

model to classify chest X-ray images, thereby improving the efficiency and accuracy of image 

processing and diagnosis, and providing a more efficient and convenient auxiliary diagnostic tool for 

primary healthcare settings. 
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This paper is organized into six sections. Section Two reviews relevant classical literature and 

discusses the development of deep learning combined with image recognition in recent years. Section 

Three details the feedforward structure of the convolutional neural network employed in this study. 

Section Four elaborates on the research process and presents the research results. Section Five 

provides a discussion, analyzing the strengths of the research methodology and interpreting the results. 

Finally, Section Six concludes the paper, discussing the advantages, limitations, and future research 

directions of this study. 

2. Literature review 

In recent years, deep learning technology has demonstrated broad application prospects in the field 

of medical image analysis. Researchers have developed automatic detection, classification, and risk 

prediction models targeting specific diseases based on various deep learning frameworks, 

significantly improving the efficiency and accuracy of medical image diagnosis. 

In 2023, a study employing a deep learning (DL) model investigated the performance of coronary 

computed tomography angiography (CTA) in diagnosing coronary artery stenosis. Using coronary 

CTA data from 89 patients with suspected coronary artery disease at Peking University Shougang 

Hospital and taking invasive coronary angiography as the reference standard, the study found that the 

DL model achieved high diagnostic accuracy for obstructive coronary artery stenosis, with an AUC 

of 0.92, sensitivity of 86.2%, and specificity of 87.6%. Moreover, its performance in diagnosing 

stenosis caused by non-calcified plaques, mixed plaques, and segmental plaques surpassed that of 

physicians [1]. 

In early applications, convolutional neural networks (CNNs) were widely used for the automatic 

detection and classification of specific organs or lesions. In 2017, a study based on brain CT image 

classification used a CNN model for preliminary screening of Alzheimer’s disease (AD), utilizing 

brain CT data from 342 subjects to distinguish among AD, organic lesions, and normal aging states, 

achieving an average classification accuracy of 82.3% [2]. In 2020, Zhou et al. employed a CNN 

model using CT images from 1,024 adult rib fracture patients from three hospitals to accurately 

classify fresh fractures, healing fractures, and old fractures, demonstrating robust performance 

comparable to that of radiologists and reducing the average detection time by 132.07 seconds [3]. 

In 2021, Gu et al. utilized the GISTNet model to conduct differential diagnosis between 

gastrointestinal stromal tumors (GISTs) with diameters ≤5 cm and other gastric submucosal tumors 

(SMTs) based on enhanced CT images. Using data from 168 patients (107 with GIST-related SMTs), 

the GISTNet model achieved an AUC of 0.900 on the test set, with a sensitivity of 100%, specificity 

of 67%, and accuracy of 83%, outperforming traditional imaging models and junior radiologists [4]. 

With the advancement of deep learning technology, some studies have integrated traditional 

imaging feature extraction methods with radiomics techniques to further enhance diagnostic accuracy 

and generalization ability. In 2018, a radiomics-based study using MRI images from 294 patients 

extracted key features and combined them with a support vector machine (SVM) algorithm to classify 

mass-forming cholangiocarcinoma, hepatocellular carcinoma, and combined hepatocellular-

cholangiocarcinoma, achieving a maximum classification accuracy of 85.3% [5]. In 2019, Fu et al. 

adopted traditional machine learning and deep learning methods to study the automatic classification 

of liver fibrosis progression in patients with chronic hepatitis B. Based on grayscale ultrasound and 

elastography images from 354 patients, classification models were built using SVM, sparse 

representation classifiers, and LeNet-5 neural networks. The binary classification accuracies were 

89.8%, 91.8%, and 90.7% respectively, while the multiclass classification accuracies ranged from 

75.3% to 87.2% [6]. In 2022, another study combined MRI radiomics and machine learning 

techniques, using DWI and PWI imaging data from 214 acute stroke patients to extract 792 radiomics 
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features, and constructed an SVM model to predict hemorrhagic transformation in acute stroke, 

achieving an AUC of 0.921 on the test set and demonstrating excellent performance [7]. 

Deep convolutional neural network (DCNN) technology has shown significant advantages in 

tumor detection tasks and has gradually been applied to more complex multimodal image fusion 

analyses. In 2024, a DCNN-based study achieved a tumor detection accuracy of 91.80% on liver CT 

images, significantly outperforming traditional watershed and connected component algorithms, 

effectively reducing misdiagnosis and missed diagnosis rates [8]. Furthermore, in 2022, a study based 

on the Faster R-CNN model used 2,354 CT images from 32 hepatocellular carcinoma patients (16 

with bile duct tumor thrombus) and employed the Faster R-CNN network to identify dilated bile ducts, 

achieving an outstanding AUC of 0.94 for preoperative diagnosis of bile duct tumor thrombus in liver 

cancer patients [9]. 

In 2020, another study on deep learning and multimodal medical image fusion applied CNNs to 

identify patients with subthreshold depression (StD). Using MRI and fMRI data from 56 StD patients 

and 70 healthy individuals, the study trained and analyzed models through MRI/fMRI data fusion, 

improving the classification accuracy of subthreshold depression to 78.57%, an increase of 5.55% 

compared to unimodal data, significantly enhancing classification performance [10]. 

From early single-modality image classification studies to more recent complex tasks integrating 

radiomics and multimodal data, deep learning has made remarkable progress in the field of medical 

image analysis. In the future, improving model interpretability, enhancing multicenter data 

generalization ability, and optimizing clinical applications will become important research directions 

in this field to better serve practical healthcare needs. 

3. Methodology 

Convolutional Neural Networks (CNNs) are a type of feedforward neural network specifically 

designed to handle image data, primarily used for image recognition and processing. Their core 

concept is to extract multi-level feature representations from data through local connections, weight 

sharing, and spatial downsampling, thereby effectively reducing the number of parameters while 

preserving spatial information. 

A convolutional neural network is composed of an input layer, hidden layers (including 

convolutional layers, activation functions, pooling layers, and fully connected layers), and an output 

layer. 

The convolutional layer generates a set of parallel feature maps by sliding different convolution 

kernels (filters) across the input image to perform local feature extraction and calculating the 

weighted sum at each position. The formula for the convolution operation is: 

 Y(i, j) = (X × W)(i, j) + b (1) 

Where, X represents the input image or feature map, W is the convolution kernel (typically of 

size k × k), b is the bias term, and Y(i, j) is the output value of the feature map. 

The activation function introduces nonlinearity into the model. A commonly used activation 

function is ReLU (Rectified Linear Unit), which retains the input value when positive and outputs 

zero when negative. In this study, LeakyReLU is used as the activation function, allowing a small, 

nonzero gradient when the input is negative. LeakyReLU is defined as: 

 LeakyReLu(x) = {
x, x ≥ 0

αx, x < 0
 (2) 

Where, α is a small positive constant, typically set to 1e−2 by default. In this study, α = 0.2. 
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The pooling layer is used for downsampling feature maps, reducing the number of parameters and 

enhancing translation invariance. The most commonly used pooling operations are max pooling and 

average pooling. The formula for max pooling is: 

 Y(i, j) = max(X(i, j), X(i + 1, j), X(i, j + 1), X(i + 1, j + 1)) (3) 

Where, Y(i, j) is the output value of the feature map. 

The fully connected layer follows the convolution and pooling operations and is used for 

classification or regression tasks. Each neuron in the fully connected layer connects to all neurons in 

the previous layer, mapping high-level features to the classification space: 

 z = Wx + b (4) 

Where, x is the input vector, W is the weight matrix, and b is the bias term. 

The common architectural pattern of convolutional neural networks is: 

 INPUT−> [[CONV] ∗ N−> POOL] ∗ M−> [FC] ∗ K−> OUTPUT (5) 

Where, INPUT denotes the input layer; CONY denotes the convolutional layer; POOL denotes 

the pooling layer; FC denotes the fully connected layer; OUTPUT denotes the output layer; and 

N, M, K represent positive integers. (Pooling layers may be omitted.) 

The structure adopted in this study is: 

 INPUT−> [CONV] ∗ 4−> [FC] ∗ 2−> OUTPUT (6) 

The hyperparameter list for this study is shown below (Table 1). 

Table 1: Hyperparameter list 

Layer Output shape Param number 

InputLayer (None, 256, 256, 3) 0 

Conv2D (None, 128, 128, 32) 896 

BatchNormalization (None, 128, 128, 32) 128 

LeakyReLu (None, 128, 128, 32) 0 

Dropout (None, 128, 128, 32) 0 

Conv2D (None, 64, 64, 64) 18496 

BatchNormalization (None, 64, 64, 64) 256 

LeakyReLu (None, 64, 64, 64) 0 

Dropout (None, 64, 64, 64) 0 

Conv2D (None, 32, 32, 128) 73856 

BatchNormalization (None, 32, 32, 128) 512 

LeakyReLu (None, 32, 32, 128) 0 

Dropout (None, 32, 32, 128) 0 

Conv2D (None, 16, 16, 256) 295168 

BatchNormalization (None, 16, 16, 256) 1024 

LeakyReLu (None, 16, 16, 256) 0 

Dropout (None, 16, 16, 256) 0 

Flatten (None, 65536) 0 

Dense (None, 100) 6553700 

BatchNormalization (None, 100) 400 

LeakyReLu (None, 100) 0 

Dropout (None, 100) 0 

Dense (None, 2) 202 
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4. Results 

In this study, we focused on determining whether patients had pneumonia based on chest X-ray 

images. The research data were collected from pediatric patients aged one to five at the Guangzhou 

Women and Children’s Medical Center, comprising a total of 5,216 chest X-ray images, including 

3,875 images of pneumonia cases and 1,341 normal images. The dataset was randomly divided into 

a training set (4,731 cases) and a test set (485 cases) using the hold-out method. 

During the data preprocessing stage, all images were normalized. Specifically, the 5,216 images 

were proportionally stretched or compressed to a uniform size of 256×256 pixels, and the color mode 

of the images was standardized to RGB. 

For model construction, a convolutional neural network composed of four convolutional layers 

and two fully connected layers was built to perform binary classification (NORMAL/PNEUMONIA) 

on the input images. The specific configurations of the convolutional layers were as follows: the 

numbers of convolutional kernels (filters) in each layer were 32, 64, 128, and 256, respectively, with 

a kernel size of 3×3 and a stride of 2. Batch normalization was applied to each batch of input data. 

The activation function used was the LeakyReLU function, with a parameter α = 0.2. Additionally, 

dropout was introduced with dropout rate = 0.2. In the fully connected layers, the first contained 

100 neurons, and the second, serving as the output layer, contained 2 neurons, employing softmax as 

the activation function. 

Regarding training parameters, the learning rate was set to 0.0005, determining the step size for 

parameter updates during training. The loss function used was categorical cross-entropy 

(“categorical_crossentropy”), and accuracy was monitored as the key metric throughout the training 

and evaluation processes. Moreover, the ModelCheckpoint callback function was utilized to save 

model checkpoints during training, specifically preserving only the model that performed best on the 

test set to avoid overfitting or poor performance. 

Figure 1 and Figure 2 display images of the NORMAL category, while Figure 3 and Figure 4 show 

images of the PNEUMONIA category. 

   

Figure 1: Image 1 of normal     Figure 2: Image 2 of normal 

 

Figure 3: Image 1 of pneumonia    Figure 4: Image 2 of pneumonia 

The experiment was conducted over 30 epochs, with the training set achieving a final accuracy of 

0.9985 and a loss value of 0.0051. On the test set, the highest accuracy obtained was 0.9793, with a 
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corresponding test loss of 0.0821. This best result occurred during the 29th epoch. Detailed accuracy 

and loss values for both the training and test sets over the 30 epochs are presented in [Table 2]. Figure 

5 and Figure 6 illustrate the changes in loss (Training and Test Loss) and accuracy (Training and Test 

Accuracy) throughout the training and testing processes, respectively. 

Table 2: Training results of each epoch 

Epoch 
Training 

Accuracy 
Training Loss 

Validation 

Accuracy 
Validation Loss 

1 0.917564988 0.234142438 0.872164965 0.325331271 

2 0.968716979 0.093950987 0.942268014 0.172519907 

3 0.979919672 0.060765516 0.950515449 0.098253578 

4 0.987317681 0.041428987 0.925773203 0.213178158 

5 0.990699649 0.030258378 0.962886572 0.106838636 

6 0.989008665 0.030921673 0.969072163 0.084634304 

7 0.993236125 0.020276889 0.954639196 0.114069179 

8 0.993447483 0.019337399 0.868041217 0.405696213 

9 0.995349824 0.015466789 0.95670104 0.145721182 

10 0.994504333 0.018674087 0.960824728 0.113141328 

11 0.995349824 0.012712151 0.973195851 0.091583982 

12 0.996195316 0.013728292 0.967010319 0.100921676 

13 0.995561182 0.011852826 0.954639196 0.135485202 

14 0.994927049 0.014774959 0.967010319 0.102580681 

15 0.996406674 0.011312119 0.969072163 0.106226236 

16 0.996195316 0.010879521 0.964948475 0.095662303 

17 0.9978863 0.006715842 0.971134007 0.095564947 

18 0.997252166 0.011268928 0.954639196 0.12324208 

19 0.997674882 0.00834303 0.967010319 0.131089255 

20 0.996618032 0.009587267 0.960824728 0.116533756 

21 0.997463524 0.007445859 0.962886572 0.104139052 

22 0.997040808 0.009834411 0.964948475 0.097293124 

23 0.998097658 0.006101265 0.960824728 0.133533746 

24 0.998731792 0.00561474 0.975257754 0.087317802 

25 0.998309016 0.006626317 0.971134007 0.108881526 

26 0.99682945 0.010370547 0.964948475 0.114163302 

27 0.998309016 0.006423338 0.919587612 0.33523199 

28 0.997463524 0.007406317 0.964948475 0.104180545 

29 0.99682945 0.00815128 0.979381442 0.082091108 

30 0.998520374 0.005115778 0.946391761 0.193137333 
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Figure 5: Training and test accuracy    Figure 6: Training and test loss 

5. Discussion 

This study selected a total of 5,216 chest X-ray images from pediatric patients aged one to five years 

at Guangzhou Women and Children’s Medical Center. The large sample size provides sufficient data 

support for the research; the distribution ratio between positive and negative samples is relatively 

balanced, avoiding the issue of dataset imbalance, which helps to enhance the model’s training 

effectiveness and generalization ability. The training set comprises 4,731 images, while the test set 

consists of 485 images, following a common data splitting standard that ensures the reliability of the 

model during the training and validation phases. The original images have a high resolution and a 

clear level of visualization, providing a solid foundation for subsequent image analysis and diagnosis, 

thus ensuring the accuracy and reliability of the research results. 

The original 5,216 images were stretched or compressed to unify the image size to 256×256, 

mainly because the structure of convolutional neural networks is fixed and cannot directly process 

input images of inconsistent sizes. Furthermore, standardizing the image size ensures that all input 

data share a consistent feature space before entering the network, thereby improving training 

efficiency and the model’s generalization ability. 

The activation function layer adopts the LeakyReLU function, which offers high computational 

efficiency and fast training speed. LeakyReLU introduces a non-zero slope α when the input is less 

than zero, allowing neurons to output non-zero values even for negative inputs, thus avoiding the 

“dying ReLU” problem and preventing gradient vanishing. This ensures that gradients can 

continuously update parameters during backpropagation. It also enhances the network’s 

responsiveness to negative inputs, helping to retain information when encountering noise and outliers, 

thereby improving the model’s robustness and generalization ability. 

The output layer uses softmax as the activation function to convert the raw outputs into a 

probability distribution, representing the likelihood that an image belongs to either the NORMAL or 

PNEUMONIA category. 

Batch normalization is applied to each batch of input data to reduce internal covariate shift, 

alleviate issues such as vanishing and exploding gradients, and ensure that the mean and variance of 

input data are maintained at 0 and 1, respectively. 

Proceedings of  ICBioMed 2025 Symposium: AI for  Healthcare:  Advanced Medical  Data Analytics  and Smart  Rehabilitation 

DOI:  10.54254/2753-8818/113/2025.AU23577 

15 



 

 

Dropout technology is introduced to reduce inter-neuron dependency by randomly “dropping out” 

a portion of the neuron outputs during training, with dropout rate = 0.2, meaning that each neuron 

has a 20% probability of being dropped during the training process. 

The learning rate is set at 0.0005, which is relatively small to ensure that parameter updates are 

smooth and the model is optimized stably in the direction of the loss function descent. At the same 

time, the learning speed is not overly slow, allowing the model to achieve good performance within 

a reasonable timeframe. Moreover, with sufficient sample data, the model can learn features 

effectively, avoiding underfitting and enabling good overall performance. 

The loss function adopts categorical cross-entropy, which measures the divergence between the 

predicted probability distribution and the true labels. The softmax activation function at the output 

layer transforms the raw outputs into a probability distribution, and categorical cross-entropy directly 

optimizes these probabilities. During backpropagation, the combined gradient expression of softmax 

and categorical cross-entropy is concise, making model training more efficient. Furthermore, with 

softmax outputs, the loss function remains convex, ensuring a global optimal solution. 

Accuracy is used as the key metric monitored during training and evaluation, directly reflecting 

the model’s classification or prediction accuracy for various samples and facilitating the comparison 

and selection of models. 

5.1. Training and test accuracy analysis 

The training accuracy curve (red line) rises rapidly at the initial stage, quickly approaching 1.00 and 

stabilizing, indicating that the model learns well and improves steadily on the training set. The curve 

is smooth in the early stages and shows minor oscillations later, demonstrating good convergence 

overall. 

The test accuracy curve (blue line) fluctuates significantly at the beginning. Although the overall 

trend is upward, it does not reach the stability level of the training accuracy. The oscillations are 

relatively large, suggesting some instability in the model’s generalization ability on the test set, 

possibly due to differences in data distribution and the relatively small size of the test set. 

5.2. Training and test loss analysis 

The training loss curve (red line) drops sharply in the early stages of training, then levels off and 

stabilizes near a low value, indicating good model fitting and stable loss convergence on the training 

set. 

The test loss curve (blue line) declines initially but fluctuates greatly, with some apparent peaks at 

certain epochs, and does not exhibit a continuously stable downward trend. This phenomenon may 

result from the small sample size of the test set, leading to insufficient generalization and unstable 

error rates. 

This model significantly reduces the workload of manual diagnosis through automated analysis, 

providing an efficient and convenient auxiliary diagnostic tool for primary healthcare institutions, 

thus holding important clinical application value. 

6. Conclusion 

This study, based on convolutional neural networks in deep learning, investigated the diagnosis of 

pneumonia through chest X-ray images. A total of 5,216 chest X-ray images of pediatric patients aged 

one to five years from Guangzhou Women and Children’s Medical Center were used in the 

experiments. The results achieved were a training accuracy of 0.9985 with a loss of 0.0051, and a test 

accuracy of 0.9793 with a loss of 0.0821. These outcomes demonstrate that the CNN model possesses 

high accuracy and reliability in pneumonia diagnosis and holds significant clinical application value. 
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It can effectively alleviate the workload of physicians and plays an important role in addressing the 

shortage and relative underdevelopment of rural primary healthcare resources. However, the current 

study still has certain limitations. The sample source is relatively homogeneous, which restricts the 

model’s generalizability. In future research, we will further expand the sample size and actively 

broaden the channels for sample collection, aiming to gather chest X-ray data from diverse regions 

and age groups. This continuous optimization of the model will enhance its generalization ability and 

provide more robust and reliable auxiliary support for the accurate diagnosis of pneumonia. 
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