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Abstract: Many studies have shown that pancreatic cancer is one of the cancers with 

extremely high mortality. The poor prognosis and lack of early diagnostic methods remain 

major challenges in the treatment of this cancer. In this article, in order to better detect the 

occurrence of pancreatic cancer, tools such as monocle3, singleR, harmony in R, and scanpy 

in Python were used to analyze the cells and genes of pancreatic cancer tissues in mice. By 

analyzing the data, the following results were obtained: T-cells in healthy PBMCs exhibited 

broader spatial dispersion than in PDAC tissues, suggesting tumor-driven immune 

surveillance impairment, while PDAC-associated macrophages displayed expanded 

distribution linked to pro-tumorigenic functions such as COL1A1-mediated ECM remodeling; 

Pseudotemporal trajectory analysis revealed myeloid progenitor bifurcation into 

monocytes/macrophages, with PDAC macrophages showing epigenetically silenced 

cytotoxic pathways such as suppressed GZMA/NKG7 and enhanced ribosomal biogenesis; 

Tissue-specific markers such as LCN2 in healthy and CTRB1/AMY2A in PDAC) and spatial 

co-localization of macrophages/tumor cells highlighted NOP53 as a dual-function hub—

inhibiting PI3K-AKT while activating p53—and SPP1 as a paradoxical regulator of 

metastasis and antitumor immunity; Differential expression and GO enrichment analyses 

identified ribosomal biogenesis and cytoplasmic translation as PDAC-enriched pathways, 

contrasting with suppressed stress responses. Our spatial transcriptomic profiling further 

resolved elevated NOP53, CFB, and SPP1 expression gradients in PDAC tissues, proposing 

these as diagnostic biomarkers. 
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1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC), the most prevalent histological subtype of pancreatic 

cancer[1] represents the seventh leading cause of global cancer-related mortality[2]. The incidence 

of pancreatic cancer has risen alarmingly worldwide, with projections indicating its persistence as a 

predominant contributor to oncologic deaths[3]. The absence of pathognomonic clinical 

manifestations and the lack of robust, minimally invasive diagnostic modalities render early PDAC 

detection exceptionally challenging[4]. Consequently, most cases are identified at advanced stages, 
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where current therapeutic interventions exhibit limited efficacy[5], resulting in a dismal prognosis 

with a five-year survival rate below 10%. Elucidating the molecular pathogenesis of pancreatic cancer 

remains imperative for developing targeted treatment strategies. 

Macrophages, heterogeneous immune cells ubiquitously distributed across all anatomical 

compartments[6,7], constitute the principal cellular component of leukocytic infiltrates in 

pathological states[8]. These phagocytic cells demonstrate remarkable phenotypic plasticity, 

dynamically adapting their functional states in response to microenvironmental stimuli[7,9-11]. 

Under neoplastic conditions, malignant cells subvert macrophage physiology, driving their 

transformation into tumor-associated macrophages (TAMs)[12,13]. TAMs facilitate oncogenic 

progression through paracrine signaling that promotes cellular proliferation, angiogenesis, and 

metastatic dissemination[13]. 

The tumor microenvironment (TME), a dynamic network comprising malignant cells, immune 

populations, stromal fibroblasts, and extracellular matrix constituents[14], exerts bidirectional 

regulation over macrophage metabolism and polarization. This regulation occurs via direct metabolite 

exchange or cytokine-mediated signaling[15]. Within the TME, intricate cross-talk between tumor 

cells, stromal elements, and immune infiltrates drives macrophage differentiation into either 

protumorigenic or tumor-suppressive phenotypes[14]. TAMs reciprocally modulate the TME by 

altering cytokine gradients and metabolic landscapes, thereby assuming central roles in antitumor 

immunity[16]. Substantial clinical evidence implicates macrophages in tumorigenic initiation and 

malignant progression[6], with TAMs constituting the predominant immune population in the TME 

and serving as critical mediators of metastatic dissemination[17]. 

TAMs function as pivotal drivers of therapeutic resistance and metastatic progression[18], sharing 

functional and phenotypic characteristics with tissue-resident macrophages[19]. As principal 

immunomodulators within the TME, TAMs directly suppress cytotoxic T lymphocyte and natural 

killer (NK) cell activation, thereby subverting protective antitumor immunity[20]. Oncogenic 

transformation of epithelial cells disrupts homeostatic macrophage differentiation pathways, 

generating parenchymal and stromal TAM subsets that accelerate neoplastic progression[21]. 

Environmental cues within the TME polarize macrophages toward either proinflammatory M1-like 

or immunosuppressive M2-like phenotypes[10]. The interaction between macrophage surface 

receptor SIRPα and tumor cell ligand CD47 generates "don't eat me" signals that inhibit phagocytic 

clearance[22]. Tumor-derived colony-stimulating factors further reinforce M2 polarization, 

enhancing TAMs' protumorigenic functions[22]. 

M2-polarized TAMs predominantly facilitate tumor progression within the TME through secretion 

of growth-promoting factors[23,24] and orchestration of immunosuppressive mechanisms, including 

synthesis of inhibitory cytokines (e.g., IL-10, TGF-β), expression of T cell co-inhibitory ligands (e.g., 

PD-L1), and depletion of essential amino acids required for effector T cell function[25]. Notably, the 

M2d TAM subtype, activated via TLR ligands and adenosine A2 receptor agonists, critically regulates 

tumor angiogenesis, metastatic dissemination, and stromal remodeling[26]. 

PDAC is histologically characterized by a fibroinflammatory stroma enriched with heterogenous 

immune infiltrates[27,28], cancer-associated fibroblasts (CAFs), extracellular matrix (ECM) proteins, 

and activated stellate cells[29]. TAMs represent the most abundant immune population within the 

pancreatic tumor stroma[30], functioning as primary instigators of immunosuppression[31]. From 

carcinogenic initiation, pancreatic tumors evolve an immunosuppressive TME marked by elevated 

myeloid-derived suppressor cells (MDSCs), M2-polarized macrophages, and regulatory T cells 

(Tregs), contrasting with diminished M1 macrophages, dendritic cells, and CD4+/CD8+ effector T 

lymphocytes[32,33]. Macrophage-derived oncostatin M (OSM) activates CAFs, inducing 

proinflammatory gene expression that fosters tumor cell survival, migratory capacity, and 

chemoresistance[34]. M2 macrophages further potentiate angiogenesis via vascular endothelial 
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growth factor (VEGF) secretion, correlating significantly with increased microvessel density (MVD) 

in PDAC specimens[35,36]. 

Single-cell sequencing encompasses genomic or transcriptomic analysis at individual cell 

resolution, involving cell isolation, nucleic acid amplification, and high-throughput sequencing[37]. 

In oncologic research, this technology enables clonal evolution analysis, cellular heterogeneity 

mapping, and functional characterization of rare cell populations[37]. Integration of single-cell RNA 

sequencing (scRNA-seq) with spatial transcriptomics has advanced understanding of macrophage 

ontogeny, phenotypic plasticity, and functional adaptation within tumors[38]. Pseudotemporal 

trajectory analysis reconstructs cellular differentiation dynamics, revealing transitional states during 

macrophage evolution[39]. 

Spatial transcriptomics employs single-molecule fluorescence in situ hybridization (smFISH) to 

localize mRNA transcripts within tissue sections[40]. Released mRNAs bind spatially barcoded 

oligonucleotide arrays, enabling reverse transcription into complementary DNA (cDNA) with 

positional fidelity. Subsequent sequencing and computational alignment generate high-resolution 

maps of gene expression topography[40]. In cancer studies, this methodology elucidates tumor 

heterogeneity, delineates cellular interaction networks within the TME, and uncovers molecular 

mechanisms underlying neoplastic initiation and progression[41]. For instance, spatial 

transcriptomics has resolved the spatial distribution and functional states of tumor-infiltrating 

macrophages while quantifying gene expression gradients across discrete tissue regions[40,41]. 

In summary, the complex interplay between TAM-driven immunosuppression, stromal 

remodeling, and metabolic adaptation underscores PDAC's therapeutic intractability. While single-

cell and spatial transcriptomic technologies have provided unprecedented insights into macrophage 

heterogeneity and TME dynamics, critical gaps remain in understanding how spatiotemporal 

coordination of these processes dictates PDAC progression and therapeutic resistance. Our study 

integrates multi-omics approaches to dissect the functional crosstalk between transcriptional 

reprogramming and spatial architecture in PDAC, aiming to identify novel therapeutic vulnerabilities 

by bridging molecular mechanisms with their spatial context. 

2. Methods 

Data Acquisition: 

The single-cell data from human samples were sourced from GEO[42]｡The dataset was derived 

from high-throughput sequencing-based expression profiling analysis. The repository encompasses 

16 PDAC tissue specimens, 3 adjacent normal pancreatic tissue samples, 16 PBMC samples obtained 

from human PDAC patients, and 4 PBMC samples from healthy volunteers. The tissues were 

subjected to mechanical mincing and enzymatic digestion using collagenase P (1 mg/mL DMEM), 

followed by filtration through a 40 μm mesh to isolate single cells. Subsequently, dead cells were 

eliminated utilizing the MACS® Dead Cell Removal Kit (Miltenyi Biotec Inc.). Single-cell cDNA 

libraries were constructed and sequenced on the 10x Genomics platform at the University of Michigan 

Sequencing Core. The sequencing was performed on HiSeq 4000 or NovaSeq 6000 (Illumina) 

instruments, employing paired-end 50-cycle reads with a sequencing depth of 100,000 reads per 

sample. The raw sequencing data were processed and aligned by the University of Michigan DNA 

Sequencing Core. Cellranger count version 3.0.0 was employed with default parameters, with an 

initial anticipated cell count set at 10,000. 

The spatial transcriptomic dataset for human pancreatic cancer samples was obtained from the 10x 

Genomics repository [43]. Formalin-Fixed Paraffin-Embedded (FFPE) tissue blocks, characterized 

by adenocarcinoma of grade I-II with approximately 50% tumor content, were sourced from AcePix 

Biosciences. Tissue preparation was conducted in accordance with the demonstrated protocols 
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outlined in the Xenium In Situ Tissue Preparation Guide for FFPE (CG000578) and Xenium In Situ 

Dewaxing and Decrosslinking for FFPE Tissue (CG000580). The gene panel utilized was the Xenium 

Human Multi-Tissue and Cancer Panel, which was pre-designed by 10x Genomics and informed by 

single-cell RNA sequencing data that were curated and standardized by the Human Protein Atlas. The 

panel comprises 93 genes specifically selected to detect major cell types in breast, lung, kidney, liver, 

skin, colon, heart, lymph node, and pancreas tissues, as well as 284 genes designed to be common 

across all tissues, with an emphasis on immune and cancer markers. This pre-designed panel was 

further supplemented with an additional 97 genes, including high expressers, to evaluate potential 

sensitivity loss due to gene crowding. The Xenium Analyzer was operated following the Xenium 

Analyzer User Guide (CG000584), and the on-instrument analysis was conducted using Xenium 

Onboard Analysis version 1.6.0. 

Filtering and normalization of scRNA-seq data: 

In this experiment, Seurat v5 was utilized. Cells with less than or more than 200 expressed genes 

and genes expressed in fewer than 3 cells were filtered out. Cells with mitochondrial gene expression 

exceeding 5% were also filtered out.The remaining cells and gene subsets were used for subsequent 

analysis. 

Dimensional reduction and clustering: 

Integrated analysis was conducted using Harmony for four healthy PBMC(Peripheral Blood 

Mononuclear Cells) samples, four PBMC samples from patients with PDAC(pancreatic ductal 

adenocarcinoma), four PDAC tissue samples, and three adjacent normal tissue samples. Additionally, 

cell annotation was performed for each sample using SingleR. During the clustering process with 

Harmony integration, the top 30 dimensions were selected. The dimensionality reduction method 

used was Principal Component Analysis (PCA). 

Pseudotime analysis:  

The subsets of cell types including macrophages, monocytes, and CMPs were extracted from each 

of the integrated files using the subset method, resulting in integrated data for these three cell types 

across the four integrated datasets. Then, CMP was selected as the root cells, and Monocle3 was used 

to learn the cellular trajectory. After learning the cellular trajectory, the top 10 genes expressed in 

macrophages were selected for differential gene expression analysis. 

Gene Expression Differential Analysis:  

The logFC values for each gene in a total of 41 samples were obtained using FindAllMarkers, with 

the parameter threshold set to 0.25. The samples were divided into two groups: adjacent normal  

tissues versus PDAC, and healthy PBMC versus PDAC PBMC, for differential gene expression 

analysis. 

Gene Enrichment Analysis:  

Gene enrichment analysis was conducted on the data obtained from the differential gene 

expression analysis using both GO and KEGG excluding data with a p-value less than 0.05, 

respectively.  

Spatial transcriptome 

Spatial transcriptomic analysis was performed using Squidpy (Spatial Quantitative Imaging of 

Differential gene expression in Python). The spatial distributions of ductal cells, macrophages, and 

tumor cells were mapped, and the spatial patterns of gene expression abundance within macrophages 

were visualized. 

3. Result 

To elucidate cell type-specific clustering patterns across four distinct sample categories, we 

implemented Harmony for batch effect correction and dataset integration. Principal Component 

Analysis (PCA) was applied for dimensionality reduction, followed by UMAP visualization to 
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resolve intrinsic clustering architectures. This pipeline effectively preserved biological heterogeneity 

while mitigating technical variability across samples. Comparative analysis revealed that T-cells in 

healthy peripheral blood mononuclear cells (PBMCs) exhibited broader spatial dispersion relative to 

pancreatic ductal adenocarcinoma (PDAC) tissues (Figures 1c, 1f). Conversely, macrophages in 

PDAC tissues displayed expanded distribution compared to adjacent non-tumor regions (Figures 2c, 

2f).  

 

Figure 1: UMAP plots and harmony - integrated for PDAC tissue and adjacent normal tissue 
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Figure 2: UMAP plots and harmony - integrated for PDAC tissue and adjacent normal tissue 

To profile transcriptional heterogeneity across cell types, we generated bubble plots with cell types 

annotated on the x-axis and gene symbols on the y-axis. Bubble size quantifies expression magnitude, 

while color gradients denote detection frequency, enabling simultaneous visualization of quantitative 

and qualitative expression features. Notably, the top 10 highly expressed genes in healthy PBMCs 

demonstrated marked divergence from PDAC PBMCs (Figures 3a, 3b). Tissue-specific markers were 

identified: LCN2 dominated in healthy tissues, whereas CTRB1 was upregulated in PDAC. Adjacent 

normal tissues showed preferential expression of SDPR, while AMY2A was enriched in PDAC 

regions (Figures 4a, 4b).  
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Figure 3: Bubble charts for expression levels of the top ten genes in PDAC PBMCs and healthy 

PBMCs 
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Figure 4: Expression levels of the top ten genes in PDAC tissue and adjacent normal tissue 

Pseudotime analysis using single-cell RNA sequencing (scRNA-seq) data reconstructed 

macrophage differentiation dynamics. By ordering cells along a pseudotemporal continuum based on 

transcriptional similarity, we delineated transitional states and lineage commitment patterns. 

Integrated trajectory analysis revealed that common myeloid progenitors (CMPs) bifurcated into 

monocytes and macrophages during development (Figure 5,6). 
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Figure 5: Pseudotime analysis for macrophage in PDAC PBMC, healthy PBMC, PDAC tissue, and 

adjacent normal tissue 



Proceedings	of	ICBioMed	2025	Symposium:	AI	for	Healthcare:	Advanced	Medical	Data	Analytics	and	Smart	Rehabilitation
DOI:	10.54254/2753-8818/2025.AU24072

70

 

Figure 6: Pseudotime analysis for macrophage in PDAC PBMC, healthy PBMC, PDAC tissue, and 

adjacent normal tissue 

UMAP visualization mapped spatial heterogeneity in macrophage gene expression across sample 

types. Transcript abundance was encoded by a continuous color gradient, with darker hues indicating 

elevated expression. In PDAC-associated macrophages, GZMA, COL1A1, and PF4 exhibited broad 

expression, while NKG7, VCAN, CCL5, CPA1, CPB1, and CTRB1 showed restricted ranges (Figure 

7a). Healthy macrophages predominantly expressed GZMK, LCN2, GZMB, FGFBP2, and PRF1 

(Figure 7a). PDAC tissues were enriched for S100A9, APOE, and CCL3, whereas adjacent normal 

regions overexpressed STC1, MALAT1, and SPP1 (Figures 8a, 8b).  
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Figure 7: UMAP plot for the top ten genes with the highest expression in macrophages within the 

PDAC PBMC and healthy PBMC 
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Figure 8: UMAP plot for the top ten genes with the highest expression in macrophages within the 

PDAC tissue and adjacent normal tissue 

To elucidate the temporal expression patterns of genes in macrophages along pseudotime, 

pseudotime trajectory analysis was performed using monocle3. The expression levels of genes 

exhibited relatively stable trends across pseudotime in macrophages from the following four groups: 

healthy PBMCs, PDAC PBMCs, PDAC tissue, and adjacent normal tissue(Figure 9,10).  
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Figure 9: Gene expression difference plot based on pseudotime analysis for the top ten genes with the 

highest expression in macrophages 
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Figure 10: Gene expression difference plot based on pseudotime analysis for the top ten genes with 

the highest expression in macrophages 

DESeq2-based differential expression analysis identified three genes significantly upregulated in 

PDAC PBMCs versus healthy controls (Figure 11a). In PDAC tissues, 18 genes were upregulated 

alongside broad downregulation of multiple loci (Figure 11b).Gene Ontology (GO) enrichment 

revealed distinct pathway activation:Tissues: Ribosomal biogenesis (small subunit), rRNA 

processing, cytoplasmic translation, and amino acid metabolism were robustly activated. Conversely, 

pathways regulating multicellular processes, signal transduction, and stress responses were 

suppressed (Figures 12b, 13b).PBMCs: Cytoplasmic translation and protein metabolism dominated 

activated pathways, while macromolecule biosynthesis showed partial suppression (Figures 12a, 13a).  



Proceedings	of	ICBioMed	2025	Symposium:	AI	for	Healthcare:	Advanced	Medical	Data	Analytics	and	Smart	Rehabilitation
DOI:	10.54254/2753-8818/2025.AU24072

75

 

Figure 11: Heatmap for all PBMCs and tissue samples 
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Figure 12: Enrichplot 

Spatial transcriptomic profiling resolved the topographic relationship between macrophages and 

tumor cells, demonstrating uniform tissue distribution (Figure 13a). High-resolution analysis 

identified NOP53 as the most abundantly expressed gene, followed by CFB, PPA1, CFTR, GATM, 

SERPINB1, and ANPEP (Figures 13b, 14a).Key Innovations:Multi-Omics Integration: Harmonized 

single-cell and spatial transcriptomics to dissect cell type-specific dynamics.Trajectory Inference: 

Uncovered myeloid lineage commitment via pseudotemporal ordering.Pathway Prioritization: 

Identified ribosomal biogenesis and stress response as central regulatory nodes in PDAC.This 

systematic framework advances precision oncology by decoding transcriptional circuits driving 

PDAC progression and microenvironment remodeling.  
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Figure 13: Dotplot, and ridgeplot obtained from GO gene enrichment analysis of the data processed 

using DEseq2 
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Figure 14: Spatial transcriptome results 
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Figure 15: Distribution map of the expression of different genes 
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Figure 16: Distribution map of the expression of different genes 

4. Discussion 

In this study, the integrated multi-omics approach delineates the interplay between transcriptional 

reprogramming and spatial organization in PDAC pathogenesis. The observed broader spatial 

dispersion of T-cells in healthy PBMCs compared to PDAC tissues may reflect immune surveillance 

attenuation in tumor microenvironments, where cytotoxic T-cell infiltration is constrained. 

Conversely, the expanded distribution of macrophages in PDAC tissues aligns with their tumor-

educated phenotypic plasticity, facilitating pro-tumorigenic functions such as extracellular matrix 

remodeling such as COL1A1 expression and immunosuppression. 

The transcriptional divergence between healthy and PDAC PBMCs, particularly in the top 10 

highly expressed genes, underscores systemic immune modulation even in circulating cells. Tissue-

specific markers like LCN2 (healthy) and CTRB1 (PDAC) not only serve as diagnostic signatures 

but also highlight metabolic rewiring in PDAC, where CTRB1—a chymotrypsin isoform—may 

promote nutrient acquisition in nutrient-scarce tumor niches. 

Pseudotime trajectory analysis revealed that myeloid progenitors bifurcate into monocytes and 

macrophages, with PDAC-associated macrophages exhibiting stable yet functionally distinct gene 

expression patterns. The restricted expression of cytotoxic mediators in PDAC macrophages, 

contrasted with their robust expression in healthy counterparts, suggests tumor-driven epigenetic 

silencing of immune effector pathways. This is further corroborated by GO enrichment showing 

suppressed stress response and signal transduction pathways in PDAC tissues  indicative of a 

microenvironment favoring immune evasion. 

The gene expression differences between PDAC PBMCs and healthy PBMCs were not significant, 

but there were notable differences in gene expression between PDAC tissues and adjacent normal 

tissues. The differential gene expression analysis reveals that, although there are relatively small 

differences in gene expression between DAC PBMCs (Peripheral Blood Mononuclear Cells from 

patients with ductal adenocarcinoma of the pancreas) and healthy PBMCs, the results of gene 

enrichment analysis indicate that genes related to cytoplasmic translation, translation, protein 
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metabolic process, gene expression, and macromolecule biosynthetic process are activated. Indeed, 

PDAC does cause alterations in gene expression within PBMCs, but these changes are not significant. 

The gene expression profiles of PDAC (pancreatic ductal adenocarcinoma) tissues differ significantly 

from those of adjacent healthy tissues.  

Spatial transcriptomics results reveal an even distribution of macrophages and tumor cells within 

the tissues. Notably, several genes, including NOP53, CFB, PPA1, CFTR, GATM, SERPINB1, and 

ANPEP, are highly expressed in these tissues, with NOP53 exhibiting the highest expression level. 

Specifically, NOP53 is abundantly expressed in PDAC tissues and functions as a tumor suppressor 

gene. Following DNA damage in humans, the interaction between NOP53 and RPL11 is disrupted, 

causing RPL11 to translocate to the nucleoplasm. This translocation subsequently inhibits MDM2 

and activates p53, thereby suppressing cell division. Additionally, NOP53 expression impedes the 

PI3K-AKT signaling pathway, promoting endogenous apoptosis and inhibiting anabolic metabolism 

in cells. Thus, NOP53's abundant expression in PDAC tissues serves to suppress the division and 

proliferation of cancer cells.SDPR gene is also expressed at higher levels in PDAC tissues compared 

to adjacent healthy tissues, acting as another tumor suppressor gene. It participates in cellular signal 

transduction by blocking the TGF-β signaling pathway, which inhibits the production of Treg cells 

and subsequently suppresses the epithelial-mesenchymal transition (EMT) phenotype in breast cancer 

cells, although its direct role in PDAC may require further investigation. STC1 is widely expressed 

in macrophages within tumor tissues and can inhibit their phagocytosis of dead tumor cells, thereby 

suppressing their antigen-presenting capacity and inhibiting the activation of T and B cells. In gene 

differential expression analyses, elevated levels of S100A4 were observed in both PBMCs from 

PDAC patients and in PDAC tissues. S100A4 can inhibit the translocation of p53 protein from the 

cytoplasm to the nucleus, reducing nuclear p53 protein levels, and also inhibit the transcriptional 

activity of p53, thereby promoting PDAC progression. STC1 can upregulate S100A4 expression by 

promoting the phosphorylation of EGFR and ERK signals, exacerbating the malignancy of PDAC. 

The expression of SPP1 is upregulated in PDAC tissues. The CXCL9:SPP1 ratio plays a role in 

determining the polarity of tumor cells, and the upregulation of SPP1 expression may promote tumor 

growth, invasion, and metastasis. However, the expression product of SPP1 is also a cytokine that 

can upregulate the expression of interferon-γ (IFN-γ) and interleukin-12 (IL-12) while reducing the 

production of interleukin-10 (IL-10). IFN-γ and IL-12 are important antitumor immune factors that 

can activate immune cells and enhance their killing effect on tumor cells. In contrast, IL-10 is an anti-

inflammatory factor that can inhibit the activity of immune cells, thereby favoring tumor growth and 

evading immune surveillance. Thus, SPP1 can both promote and inhibit the development of PDAC. 

The spatial co-localization of macrophages and tumor cells  coupled with elevated NOP53 expression, 

positions NOP53 as a important node in PDAC biology. Beyond its canonical role in ribosomal 

biogenesis, NOP53’s tumor-suppressive function via p53 activation and PI3K-AKT inhibition 

provides a dual therapeutic axis. Similarly, SPP1’s paradoxical role:pro-metastatic via CXCL9:SPP1 

imbalance yet immunostimulatory through IFN-γ/IL-123 induction.It emphasizes the need for 

context-specific targeting strategies. 

In PDAC tissues, changes in gene expression lead to a reduction in the cytotoxicity of macrophages. 

By examining the differences in gene expression between tissue samples and healthy tissues, if the 

expression levels of genes such as NOP53, STC1, and SPP1 are elevated, it may indicate the presence 

of PDAC. This can be used for early diagnosis of cancer occurrence, facilitating subsequent treatment. 

5. Conclusion 

This study integrates single-cell and spatial transcriptomics to unravel the spatiotemporal dynamics 

of TAMs in PDAC. We demonstrate that PDAC-associated macrophages exhibit spatially expanded 

distributions and epigenetically silenced cytotoxic pathways, contrasting with their healthy 
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counterparts. Key molecular nodes, including NOP53 and SPP1, were identified as central players in 

PDAC progression and immune evasion. Spatial transcriptomic profiling further highlights ribosomal 

biogenesis and cytoplasmic translation as PDAC-enriched pathways, with elevated expression 

gradients of NOP53, CFB, and SPP1 serving as potential diagnostic biomarkers. These findings 

underscore the therapeutic potential of targeting macrophage-driven immunosuppression and 

metabolic reprogramming while emphasizing the need for context-specific strategies to address the 

roles of molecular hubs in PDAC biology. 
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