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Abstract: This paper explores the application of Fourier Transform for analyzing EEG signals 

in the context of sleep stage classification. The study seeks to enhance classification accuracy 

by extracting spectral features through Fourier analysis. The research methodology integrates 

EEG preprocessing, feature extraction via frequency analysis, and a straightforward machine 

learning model for classifying different sleep stages. The results show moderate classification 

accuracy (~57%) using simple Fourier features and traditional classifiers (SVM, KNN), 

demonstrating feasibility but highlighting challenges especially in identifying REM sleep. 

This suggests potential for practical implementation in automated sleep monitoring systems 

and clinical diagnostics. 
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1. Introduction 

Sleep doesn’t happen all at once—it passes through a series of stages that cycle across the night. 

These include the non-REM stages (N1 to N3), as well as REM sleep, when the brain becomes more 

active and dreaming usually occurs. Being able to tell these stages apart is important for diagnosing 

a range of disorders, like sleep apnea and narcolepsy [1]. 

EEG, or electroencephalography, is often used to monitor brain signals while people sleep. These 

signals shift depending on the stage, and sleep technicians usually interpret them using standardized 

rules like those from the AASM [2-3]. But even with guidelines, manual scoring takes time and can 

vary between scorers. 

That’s why automatic classification methods have become a major area of research. Some of the 

most accurate results come from deep learning models [4], though they need large datasets and lots 

of computing power. In clinics or with portable devices, this can be a problem. 

One alternative is to look at the frequency components of EEG data. The Fourier Transform helps 

break a signal down into bands like delta, theta, alpha, and beta—all of which relate to different sleep 

stages [5]. These features are relatively easy to compute and interpret, but most studies include them 

as just part of a larger pipeline. 

In this work, we wanted to test how far those basic features could go on their own. We used spectral 

power from each band and applied two straightforward classifiers—SVM and KNN [6]. These are 

easy to use, don’t need GPUs, and are more transparent than neural networks. We ran the tests on the 

full Sleep-EDF Expanded dataset (153 recordings from OpenDataLab) to see whether simple 

frequency information and light models can still produce meaningful results in sleep staging. 
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2. Literature review 

Understanding sleep stages matters for both research and medical work. The AASM splits sleep into 

five main stages: Wake, N1, N2, N3, and REM. These are not just labels—each shows up differently 

in EEG recordings. For example, light sleep (N1) tends to have low and mixed frequencies. As sleep 

deepens into N2 and N3, patterns change: N2 includes spindles and K-complexes, while N3 is mostly 

slow-wave delta activity. REM, on the other hand, looks more like being awake—low amplitude, fast, 

and mixed. 

Traditionally, people score these stages by eye. It works, but it’s slow and not always consistent 

[7]. That’s probably why automated systems became more popular over time. In the early years, some 

methods used if-then rules or hand-picked features. These were efficient but couldn’t easily adapt to 

new data. 

Later came deep learning. Neural networks like CNNs and RNNs got good at learning EEG 

patterns directly [8-9]. Still, the downside is clear: they need lots of data, long training time, and 

strong hardware. For everyday or clinical use, that’s a big hurdle. 

Fourier-based analysis is another route. It breaks EEG down into frequency bands like delta, theta, 

alpha, and beta [10]. These are often used as inputs to models, especially deep or ensemble systems. 

But in many cases, they aren’t evaluated on their own. For example, [11] and [12] both used them, 

but mostly as part of something bigger. 

There’s still a gap: not many people have tested how well these features work with just basic 

models. One example, [13], looked at time vs. frequency inputs—but their study stayed within deep 

learning. [14] also used neural nets without diving into how the spectral features behaved. 

That’s where this paper steps in. We keep it simple: frequency-band features plus two classic 

classifiers, SVM and KNN. No deep nets, no ensembles. Just a full EEG dataset and a direct 

question—can this basic setup still classify sleep stages in a useful way? 

3. Methodology 

3.1. Dataset and subject selection 

This study uses the Sleep-EDF Expanded dataset made available through OpenDataLab, which 

replicates the original resource from PhysioNet. The dataset includes full-night polysomnographic 

(PSG) recordings from healthy adults, all collected in a controlled lab environment. Each recording 

is stored in EDF format and comes with an accompanying hypnogram file that labels sleep stages 

throughout the night. 

From the full archive, we selected only complete PSG-hypnogram pairs. This filtering resulted in 

153 valid recordings for analysis. Each subject’s data included two files: one for the EEG and other 

physiological signals, and one for the stage annotations. All files were processed locally after 

download. 

The PSG signals include EEG, EOG, and EMG channels. While multiple signals can improve 

stage classification [15], we limited focus to EEG, specifically the Fpz-Cz channel. When that was 

missing, alternatives like Pz-Oz or C4-A1 were used instead. EEG recordings were sampled at 100 

Hz, and sleep stages were annotated in 30-second segments, following AASM standards. 

We mapped the annotated sleep stages into five categories: Wake (W), N1, N2, N3 (combining 

stages 3 and 4), and REM. These labels were later matched to corresponding EEG epochs to be used 

as targets for the classification models.)  
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3.2. Signal processing 

We processed each EEG recording using a standardized pipeline built with MNE-Python. All 153 

PSG-hypnogram pairs went through this process individually. 

One EEG channel was selected for each subject. Fpz-Cz was the first choice when available, as it 

is frequently used in sleep studies. If that wasn’t present, we used other EEG channels like Pz-Oz or 

C4-A1 depending on what was recorded. 

To clean the signal, we applied a bandpass filter between 0.5 and 30 Hz. This helped eliminate 

slow drifts and fast noise, while keeping the main sleep-related frequency bands intact—delta, theta, 

alpha, and beta. 

We then loaded the sleep stage labels from the hypnogram file. These labels appear every 30 

seconds and were converted into numeric codes: 1 for Wake, 2 for N1, 3 for N2, 4 for N3 (combining 

stages 3 and 4), and 5 for REM. The EEG was split into non-overlapping 30-second chunks to match 

the labels. Any segment with poor signal quality or missing data was excluded automatically. 

All scripts were written in Python (version 3.11) and run in batch mode so that every file was 

handled the same way. The clean segments were saved for use in the next step: spectral analysis. 

3.3. Spectral feature extraction 

After preprocessing, we analyzed each EEG segment in the frequency domain. Instead of using the 

standard FFT, we chose Welch’s method to estimate spectral power. It works by dividing the signal 

into overlapping windows and averaging their spectra, which makes the output more stable and less 

sensitive to noise. 

The EEG was sampled at 100 Hz. For each 30-second segment, we applied Welch’s method using 

a window of 256 samples and 50% overlap. This gave us a clear view of the power distribution across 

the signal without losing time resolution. 

We focused on four frequency bands that are relevant to sleep: 

• Delta (0.5–4 Hz): often seen in deep sleep, 

• Theta (4–8 Hz): linked to light sleep and REM, 

• Alpha (8–13 Hz): common during relaxed wakefulness, 

• Beta (13–30 Hz): more active during REM and alert states. 

For every segment, we calculated how much power was present in each of these bands. That gave 

us a simple four-number summary of the signal. These summaries were then matched with the sleep 

stage label from the hypnogram. 

When this process was done for all recordings, we had a full dataset of labeled segments. Each one 

had a spectral profile and a known sleep stage. We saved everything as a CSV file, which was later 

used to train the classifiers. 

3.4. Machine learning classification 

To test how well the spectral features could classify sleep stages, we trained two standard machine 

learning models: K-Nearest Neighbors (KNN) and Support Vector Machine (SVM). These 

algorithms are simple, easy to interpret, and don’t require much computing power, which makes them 

practical for real-world use. 
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3.4.1. Feature standardization and data splitting 

Each 30-second EEG segment was represented by four numbers--one for the power in each of the 

delta, theta, alpha, and beta bands. These were paired with sleep stage labels (Wake, N1, N2, N3, 

REM) to form a multi-class classification problem. 

Before training the models, we normalized the features using z-score scaling so that each column 

had a mean of zero and a standard deviation of one. This helped prevent any one feature from 

dominating due to differences in scale. We then split the data into training and testing sets, with 80% 

used for training and 20% for testing. The split was stratified so that all sleep stages remained 

balanced across the two sets. 

3.4.2. K-Nearest Neighbors (KNN) classifier 

We used a KNN model with k=5, where each test point was classified based on the majority vote of 

its five closest neighbors in the training data. Euclidean distance was used to measure similarity. KNN 

doesn’t rely on a learned model structure, which makes it flexible but also sensitive to how the data 

is distributed. 

3.4.3. Support Vector Machine (SVM) classifier 

We also trained an SVM classifier using a radial basis function (RBF) kernel. This setup allows the 

model to draw nonlinear boundaries between sleep stages. The regularization parameter was left at 

the default value C=1.0, and the kernel coefficient was set to 'scale'. SVM tends to work well even 

when the feature space is small, as in our case. 

3.4.4. Evaluation metrics 

We tested both models on the same test set and used several metrics to compare their performance: 

• Accuracy: percentage of correctly predicted stages. 

• Precision, Recall, F1-score: calculated for each stage to understand performance on specific 

classes. 

• Confusion Matrix: to visualize how the predictions were distributed across stages. 

The results for both models are shown in the next section, where we compare their strengths and 

weaknesses in more detail. 

4. Results 

4.1. Spectral feature distribution 

We looked at how the power in each EEG frequency band varied across the five sleep stages, using 

boxplots to compare them. The differences weren’t perfectly clean, but some clear patterns did 

emerge. 
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4.1.1. Delta power 

 

Figure 1: Delta power distribution 

Delta power (see Figure 1) was strongest during N3, which matches what we know about slow-wave 

activity in deep sleep. Wake and REM stages had much less delta energy. 

4.1.2. Theta power 

 

Figure 2: Theta power distribution 

In Figure 2, theta power appeared across all stages but tended to rise a bit in N1 and REM—these 

lines up with prior work that connects theta with light sleep and dreaming. 
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4.1.3. Alpha power 

 

Figure 3: Alpha power distribution 

Figure 3 shows that alpha power peaked during the Wake stage. This makes sense, since alpha is 

common when someone is awake but relaxed. As sleep deepened, alpha power dropped off quickly. 

4.1.4. Beta power 

 

Figure 4: Beta power distribution 

In Figure 4, beta power showed up the most during REM and wakefulness, but there was considerable 

overlap with other stages too, which suggests beta isn’t as reliable on its own. 
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Overall, these frequency bands capture meaningful stage-related differences, but there’s still a lot 

of overlap—especially between N1, N2, and REM. That’s likely why combining multiple bands 

through machine learning works better than relying on a single metric. 

4.2. Sleep stage classification 

To evaluate the model performance, we ran both KNN and SVM classifiers using the power values 

from the four EEG frequency bands. The goal was to see how well simple spectral features could 

distinguish sleep stages. 

Table 1: KNN classification report 

Sleep Stage Precision Recall F1-score Support 

W 0.497 0.505 0.501 739 

N1 0.457 0.508 0.481 1189 

N2 0.510 0.512 0.511 1276 

N3 0.748 0.775 0.761 911 

REM 0.383 0.157 0.223 312 

Accuracy   0.539 4427 

Macro avg 0.519 0.491 0.495 4427 

Weighted avg 0.533 0.539 0.532 4427 

 

The KNN model, shown in Table 1, reached an overall accuracy of 53.9%. Not surprisingly, it 

performed best on N3 sleep, with an F1-score of 0.761. N3 tends to stand out due to its strong delta 

power, so this result was expected. For N2, the score was moderate (F1 = 0.511), while performance 

dropped sharply on REM, with an F1-score of just 0.223. I suspect this is related to the smaller number 

of REM samples and possibly more overlap with nearby stages like N1. 

Table 2: SVM classification report 

Sleep Stage Precision Recall F1-score Support 

W 0.679 0.395 0.500 739 

N1 0.492 0.666 0.566 1189 

N2 0.523 0.569 0.545 1276 

N3 0.742 0.814 0.777 911 

REM 0.000 0.000 0.000 312 

Accuracy   0.576 4427 

Macro avg 0.487 0.489 0.477 4427 

Weighted avg 0.549 0.576 0.552 4427 

 

The SVM model, summarized in Table 2, did slightly better overall with 57.6% accuracy. It 

showed a similar strength in identifying N3 (F1 = 0.777), and its results for N2 and N1 were a bit 

stronger than KNN’s. Interestingly, it also improved Wake stage prediction slightly. However, just 

like KNN, it failed to pick up REM—precision and recall were both very low for that class. 

Looking at the macro and weighted F1-scores (0.477 and 0.552), SVM seemed to handle the class 

imbalance more gracefully, though it still struggled with underrepresented stages. This suggests that 

while spectral power works well for certain stages—especially deep sleep—it may not be enough on 

its own. Future improvements might come from rebalancing the dataset or using features that better 

capture time-dependent changes. 
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4.3. Confusion matrix analysis 

To better understand where the models performed well—or didn’t—we examined the confusion 

matrices from both KNN and SVM (Figures 5 and 6). These visuals helped identify which stages 

were often mixed up. 

 

Figure 5: KNN confusion matrix 

With KNN, the first thing that stood out was how well N3 was classified. Most N3 samples were 

correctly identified, which makes sense given how distinct its spectral signature is. But when it came 

to N1, there was a lot more confusion. Many of those samples ended up labeled as Wake or N2. That 

wasn’t too surprising, since light sleep and wakefulness tend to have overlapping features. 

 

Figure 6: SVM confusion matrix 
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The SVM matrix in Figure 6 told a similar story. It also handled N3 well and did a slightly better 

job distinguishing between N1 and N2 compared to KNN. That said, REM remained a big issue. 

None of the REM samples were correctly predicted, which gave it a recall of zero. That might have 

to do with how few REM examples were available—or maybe its features aren’t different enough to 

stand out. 

Overall, the confusion matrices highlighted a familiar pattern: deep sleep is relatively easy to spot, 

but lighter and transitional stages like N1 or REM are much harder. These results suggest that relying 

only on frequency band power has limits. Other studies using single-channel EEG have noted the 

same challenge with REM detection [16], so future work might need to look at different features or 

balance the dataset better. 

5. Conclusion 

5.1. Comparison with prior studies 

Our models didn’t reach the same accuracy levels as deep learning methods, but that was expected—

and not the main goal. Instead of aiming for top-line performance, we focused on transparency and 

simplicity, which are often more practical in real-world applications. 

For context, [4] and [8] both used deep neural networks on the same dataset and reported 

accuracies above 80%. In comparison, our SVM model reached 57.6%. That’s a significant gap, but 

one that comes with important trade-offs. Unlike complex models, our approach doesn’t require 

GPUs, massive training data, or long processing times. In clinical or wearable-device contexts, those 

practical benefits can matter more than a few extra percentage points of accuracy. 

When it comes to deep sleep (N3), our models performed surprisingly well. With F1-scores above 

0.76 for both classifiers, our results align with earlier studies that highlighted delta power as a strong 

indicator of this stage. This supports the idea that for clearly defined stages like N3, simple frequency 

features can be just as effective as more advanced techniques. 

However, the results weren’t as strong for lighter or transitional stages. Many N1 samples were 

misclassified as Wake or N2, likely because the frequency bands for those stages overlap. This shows 

the limitations of using just static spectral features: they don’t always capture the subtle shifts in brain 

activity that define transitions between sleep states. 

5.2. Practical implications 

The fact that this system uses basic features and straightforward classifiers makes it easier to deploy 

in environments where resources are limited. For example, wearable sleep trackers or bedside devices 

could benefit from models that run quickly and don’t rely on massive, labeled datasets [17]. 

Also, the use of defined frequency bands means clinicians can trace predictions back to known 

physiological patterns. Instead of black-box decisions, the output can be explained, which is 

especially useful for clinical interpretation and trust [18]. 

5.3. Limitations 

There are a few important limitations to consider. First, we only used single-channel EEG data. That 

means we lost spatial information, which may be one reason the models struggled to recognize REM 

sleep. Prior work has shown that including more channels—or adding EOG and EMG—can improve 

performance, especially for complex stages like REM [19]. 

Second, the dataset had a clear class imbalance. REM and N1 stages were underrepresented, and 

that likely skewed the models toward the majority classes. It also didn’t help that REM and N1 share 
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some frequency similarities with nearby stages [16], making them harder to isolate with power-based 

features alone. 

Finally, our features came from Fourier analysis, which assumes the signal is stationary. But EEG 

signals during sleep are often dynamic. Using a stationary method may have limited our ability to 

pick up quick transitions or brief events—something future work could address. 

5.4. Future work 

There are several directions this project could take. First, using multiple EEG channels—or bringing 

in other signals like EOG and EMG—would likely help, especially with REM classification. Second, 

applying time-frequency methods like wavelets or short-time Fourier transform could let us capture 

transient changes, not just average power. 

Also, the imbalance in the data could be addressed with sampling techniques or class weighting 

during training. And finally, it might be worth exploring lightweight hybrid models—ones that 

combine frequency features with simple sequential layers like RNNs—to improve performance 

without giving up transparency or speed. 

6. Conclusion 

In this study, we looked at whether simple frequency features—taken from EEG using Fourier 

analysis—could support sleep stage classification when paired with basic models like KNN and SVM. 

While the results weren’t outstanding in overall accuracy (53.9% for KNN, 57.6% for SVM), both 

models handled deep sleep (N3) quite well, with F1-scores above 0.76. 

The classifiers struggled more with N1 and REM, which wasn’t too surprising. These stages are 

both less represented in the dataset and have overlapping spectral content, so distinguishing them 

using just bandpower features is difficult. Still, the models’ simplicity and speed make them appealing 

for practical settings—like wearable sleep trackers or clinical tools where explainability matters. 

There’s room for improvement. Adding more EEG channels, or signals like EMG and EOG, could 

help. So could switching to time-frequency features, which might better capture transitions [20]. More 

diverse datasets would also help test generalizability. 

In short, this pipeline doesn’t aim to replace deep neural networks—but it shows that lightweight, 

interpretable methods still have a place in EEG-based sleep research, especially where clarity, speed, 

and simplicity are priorities. 
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