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Abstract: Closed - loop brain - computer interfaces (BCIs) are a promising advancement in 

treating neurological disorders as they enable real-time interaction between the brain and 

external devices. This paper reviews the fundamental principles of closed-loop BCI 

technology, its potential therapeutic applications, and the technical frameworks supporting 

their operation. The review concentrates on the application of closed - loop BCIs in stroke 

rehabilitation and paralysis recovery, emphasizing how these systems can provide real - time 

feedback and adaptive responses to promote neural plasticity and functional recovery. By 

capturing and decoding brain activity, BCIs offer a non-invasive method to restore motor 

function and improve the quality of life for patients with stroke or paralysis. Despite the 

promising advantages, challenges such as signal noise, clinical scalability, hardware 

limitations, and ethical concerns persist. The study emphasizes the need for interdisciplinary 

collaboration to overcome these challenges and further advance closed-loop BCIs as effective 

tools for neurological treatment. These technologies have significant potential for improving 

the outcomes of stroke and paralysis rehabilitation. 
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1. Introduction 

Improvements in machines have led to a revolution in neurological diseases. From medication to 

mechanical assistance, machine-assisted therapy has now become an effective method to treat 

diseases involving abnormal neural connection function. EEG-based brain-computer interfaces are 

one of the most widely used non-invasive methods. BCI, being subdivided into closed-loop and 

opened-loop, is a system that measures brain activity and converts it into functional useful output.  

While open - loop BCI only collects and analyzes signals of human brain activities, closed - loop 

BCI adjusts the mechanism of the machine to make it more suitable for human behavior. As a result, 

the system provides rehabilitation robotics and receives sensory feedback controlled by the end - user 

to promote stimulatory neuroplasticity - based reorganization of the motor - related brain regions [1]. 

Based on the effectiveness of the closed-loop brain-computer interface mechanism------ adjusting the 

data of the external connection machine according to the data of the brain activity to help humans act 

better; it is actually considered to be a new method with great potential for the treatment of 

Parkinson's disease, Epilepsy, Stroke and other neurological diseases [2]. 
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This paper focuses on the Potential application of Closed-Loop BCI in the treatment of 

neurological diseases, in particular its framework and approach. The fundamental principle of closed 

- loop Brain - Computer Interface (BCI) and its potential value in the treatment of neurological 

diseases, as well as its current applications and potential future applications. 

2. Principles and technical framework of closed-loop BCI 

2.1. Framework of signal collection 

An electroencephalogram (EEG) is a test that measures electrical activity in the brain. BCI collects 

brain activity through EEG, then analysis the data. A closed-loop EEG-based BCI system, shown in 

Fig.1 consists of the following components: [3] 

 

Figure 1: Flowchat of a closed-loop EEG-based BCI system [3] 

1) Signal acquisition: This process uses an EEG device to collect EEG signals from the scalp 

through various connection methods. Wired connections and gel were common for enhancing 

conductivity; currently, wireless connections and dry electrodes are becoming very popular[3].  

2) Signal processing: EEG signals are weak and easily contaminated. This process usually applies 

methods like temporal and spatial filtering to improve the signal - to - noise ratio[3].  

3) Feature extraction: It utilizes characteristics from the time domain, frequency domain, time - 

frequency domain, Riemannian space, and functional brain connectivity to represent EEG signals 

effectively [3]. 

4) Pattern recognition: It employs either a classifier or a regression model based on the application. 

Frequently used classifiers include linear discriminant analysis (LDA) and support vector machine 

(SVM)  

5) Controller: It executes commands to operate external devices (such as a wheelchair or a drone) 

or adjust environmental properties (like changing the difficulty level of a video game)[3]. 

2.2. Approaches of closed-loop EEG-based BCI 

For different users of closed-loop BCI, their EEG is different. In order to get used to these difference, 

closed-loop BCI uses various approaches. One of the most promising such approaches is transfer 

learning (TL) which leverages data knowledge from source domains (existing subjects) to assist in 

calibrating the target domain (new subjects). TL can be applied to multiple components of a BCI 

system, and propose a complete TL pipeline for MI-based BCIs, shown in Figure 3 [4]. 

1) Time filtering, in which the source and target domain data are band-pass filtered [4]. 

2) Data alignment: Align EEG tests in the source and target domains to make their distribution 

more consistent. This is a new component that does not exist in Figure 2, but it will greatly facilitate 

TL in sequential components [4]. 

3) Spatial filtering, where TL can be used to design better spatial filters, especially when the 

amount of target domain labeled data is small [4]. 
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4) Feature engineering, where TL may be used to extract or select more informative features [4]. 

5) Classification, where TL can be used to design better classifiers or regression models, 

especially when there are no or very few target domain labeled data [4]. 

 

Figure 2: A complete TL pipeline for closed-loop MI-based BCI systems [4] 

3. Opportunities of closed-loop BCI apply to different neurological diseases 

3.1. Application of closed-loop brain-computer interfaces in stroke rehabilitation 

A stroke can occur when blood flow to the brain is blocked or there is sudden bleeding in the brain. 

There are two types of strokes: one is called a hemorrhagic stroke and the other is called an ischemic 

stroke. 

While a hemorrhagic stroke occurs because of sudden bleeding in the brain which puts pressure on 

brain cells and damages them; the ischemic stroke appears differently. As the blood flow to the brain 

is blocked, the brain cannot get oxygen and nutrients from the blood. Without oxygen and nutrients, 

brain cells begin to die within minutes. The ischemic stroke then occurs [5]. 

Recent research showed that Closed-loop BCI technology has emerged as a promising tool in 

stroke rehabilitation. By continuously monitoring brain activity and providing real-time feedback, 

this technology offers a way to repair disrupted sensory-motor pathways. In patients with ischemic 

stroke, paralysis often leads to "learned non-use" of the affected limb, and Closed-loop BCI 

integrated with robotic systems and haptic feedback mechanisms can help restore dormant motor 

function. Similarly, in patients with hemorrhagic stroke, these systems compensate for sensory input 

lost due to brain cell damage, facilitating the restoration of motor planning and execution [1]. 

At the heart of the closed-loop BCI is the motion imagery (MI) principle, which enables the system 

to decode motion intentions from subtle brain signals, such as event-related desynchronization (ERD). 

Even if the body is unable to move, MI-based training allows the brain to actively participate in 

rehabilitation. This approach also has psychological benefits, providing stroke patients with 

encouragement and a sense of accomplishment that can ease depression and anxiety after a stroke [6]. 

Another compelling aspect of this technology is its ability to provide personalized, task-specific 

training. By capturing motion-related brain signals, such as event-related desynchronization ERD, 

and perceptual motor rhythm (SMR), BCIs can translate a patient's motor intentions into operational 

signals for external devices that help restore function in paralyzed limbs [1]. Then, By embedding 

exercises into real-world scenarios and tailoring feedback to individual brain activity, closed-loop 

BCI can not only accelerate functional recovery, but also enhance neuroplasticity. These systems 

bring a level of precision and adaptability that traditional rehabilitation methods cannot achieve, 

making them particularly effective for recovery from ischemic and hemorrhagic strokes. This 

technology transforms the landscape of stroke rehabilitation and offers new possibilities for regaining 

independence; thus improving patients' life quality. 
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3.2. Application of closed-loop brain-computer interface in paralysis rehabilitation 

BCI can effectively improve the decoding accuracy of brain signals through advanced signal 

preprocessing and feature extraction technologies, such as common spatial pattern (CSP) and 

time-frequency analysis. To meet the individual needs of patients, the researchers have also 

developed deep learning-based classification algorithms such as convolutional neural networks 

(CNNS) and recurrent neural networks (RNNS), which significantly improve the BCIs' ability to 

recognize complex signals. 

Therefore, the application of closed-loop BCI in patients with paralysis is promising. By recording 

motion-related cortical potentials (MRCP) and perceptual motor rhythm (SMR) in EEG signals, BCI 

is able to capture a patient's motor intentions and convert them into operational commands. This not 

only compensates for the lack of muscle control in paralyzed patients, but also enhances the brain's 

neuroplasticity through real-time feedback, speeding up the recovery process. Motor imagination (MI) 

is an important part of the closed-loop brain-computer interface. Even if a patient is physically unable 

to move, relevant brain signals can be activated by imagining movement, which offers the possibility 

of recovery. In addition, BCI can be combined with techniques such as transcranial direct current 

stimulation (tDCS) to regulate brain excitability and further improve efficacy [7]. 

4. Potential challenge of closed-loop BCI application 

In recent years, BCI has shown great potential in the treatment and rehabilitation of these diseases, 

but it also faces many technical and ethical challenges.  

4.1. Complexity of brain signals  

Brain signals have non-stationary and high noise characteristics, especially in patients with 

neurological diseases, damaged brain regions may generate abnormal signals, which brings 

challenges to the decoding accuracy of BCI. In addition, the brain signal characteristics of different 

patients vary greatly, resulting in the need for individual debugging of the BCI system for each 

patient, increasing the cost and difficulty of implementation [6]. 

4.2. Limitations of classification algorithms  

Traditional classification algorithms including linear discriminant analysis and support vector 

machines have limited effectiveness in processing complex brain signals. Although deep learning 

techniques, such as convolutional and recurrent neural networks, significantly improve decoding 

capabilities, their reliance on large data sets increases the difficulty of model training. Meanwhile, the 

computational complexity of deep learning models limits their wide application in real-time BCI 

systems [8]. 

4.3. Hardware technology bottlenecks 

Non - invasive EEG devices are the most common means for BCI to acquire brain signals. However, 

their signal quality is restricted by external artifacts (e.g., myoelectric noise) and electrode stability. 

Although dry electrodes enhance device portability, the long - term signal - drift problem remains 

unsolved. In addition, the communication stability and power management of portable wireless EEG 

devices still need to be optimized [9]. 
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4.4. Data security and privacy protection 

With the widespread of BCI technology, data security and privacy concerns are becoming 

increasingly prominent. Electroencephalography (EEG), as a sensitive biological signal, involves 

users' private information, making the protection of this data from theft and misuse a significant 

challenge. Although existing biometric technologies provide some level of security, they still at risks 

of being imitation and duplication. This calls for an enhancement in protection mechanisms for 

biological signals while safeguarding privacy. In the future, by integrating more efficient encryption 

technologies and data protection solutions, BCI systems can offer a more secure user experience [10]. 

5. Conclusion 

The application of Closed - loop BCI technology in treating neurological diseases represents an 

important advance in neurological rehabilitation. By integrating real-time monitoring, signal 

decoding, and feedback mechanisms, closed-loop BCI offers a dynamic and adaptable approach to 

functional recovery for patients with stroke, paralysis, and spinal cord injury. The system not only 

compensates for damaged neural pathways by converting brain activity into actionable outputs, but 

also enables long-term rehabilitation and functional improvement by promoting neuroplasticity. 

Although closed-loop BCI shows great potential, its application still faces challenges such as 

signal complexity, hardware limitations, and personalized training requirements. In addition, ethical 

and privacy issues surrounding the use of brain data must also be addressed to ensure a responsible 

and transparent rollout of the technology. However, with advances in deep learning algorithms, 

non-invasive hardware, and real-time feedback techniques, these barriers are gradually being 

overcome, paving the way for more efficient, easy-to-use closed-loop BCI applications. 

As closed-loop brain-computer interface systems continue to evolve, they are expected to promote 

neurological rehabilitation, leading to greater independence and a better quality of life for patients. 
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