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Abstract: Major depressive disorder (MDD) is a severe threat to health, impacting 3.8% of 

the population globally. Current treatment for MDD is synthetic drugs, which exert little 

response in some patients and show some side effects. With its mild actions of treatment, 

plant-based medicine (PBM) is a novel perspective for MDD therapy. This review 

demonstrates and summarizes seven antidepressant mechanisms: monoamine 

neurotransmitter regulation, hypothalamus-pituitary-adrenal (HPA) axis regulation, 

inflammation regulation, brain-derived neurotrophic factor (BDNF) regulation, oxidative 

stress regulation, gut microbiota regulation, and neuroplasticity regulation. Some typical 

PBMs function in these mechanisms, which are listed. This review shows that PBMs could 

treat MDD through multiple mechanisms, and ingredients in PBMs work interactively and 

integrally when treating MDD. The antidepressant effect of PBM is emphasized, and a deeper 

insight into the mechanisms involved is offered. PBM will have greater acceptance and a 

larger market, relieving the suffering of patients, with more clinical trials completed and more 

promotion done. 
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1. Introduction 

Major depressive disorder (MDD) is a specific clinical diagnosis of depression which poses a 

significant threat to mental health, affecting millions of individuals worldwide [1]. Patients with 

MDD are usually clinically characterized and diagnosed with depression, reticence, sleep disorders, 

and idiopathic pain, and those with severe depression may develop self-harm and suicide [2,3]. 

Additionally, MDD has many chronic comorbidities [4], which are linked with increased difficulty 

of treatments and increased health care utilization and costs. For these physical and psychological 

conditions, depressed patients usually have lower quality of life with higher morbidity and mortality 

[5]. However, the pathogenesis of depression is complex, and its mechanism is not yet well defined. 

Research shows that regional alterations often occur in brain volumes of MDD patients [6] and 

functional changes in cognitive control networks [7]. In contrast to healthy individuals, patients with 

MDD might experience monoamine deficiency [8], abnormal function of the hypothalamic-pituitary-

adrenal (HPA) axis [9], dysregulation of inflammatory cytokine [10], lower brain-derived 
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neurotrophic factor (BDNF) [11], poorer neuroplasticity [12], and the changes in the mitochondrial 

structure and function [13]. Moreover, the weak antioxidant capacity [14], dysregulation of the gut 

microbiota [15], overactivated kynurenine metabolic pathway and reduced tryptophan (TRP) [16] can 

also contribute to the pathological development in MDD patients. 

Currently, the most prevalent treatment for depression is the use of synthetic medications, such as 

anti-depressants. According to Warren, the mechanisms behind these medications have not been fully 

elucidated [17]. However, there are different theories on the effects of anti-depressant medications. 

One theory, the monoamine theory, believes that anti-depressants target certain neurotransmitters, 

such as serotonin, noradrenaline and dopamine, to help with the chemical imbalances present within 

the brain [17-19]. According to the UK National Health Service, commonly taken anti-depressants 

include selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors 

(SNRIs) and noradrenaline and specific serotonergic antidepressants (NASSAs). Approximately 60% 

of patients worldwide exhibit an improvement in symptoms within two months of taking the above-

mentioned medications [20]. However, some patients are irresponsive to anti-depressants, with 10%-

30% of the patients showcasing zero to little improvements in MDD [21]. Other than the effectiveness 

among different patients being uncertain, side effects of anti-depressants are also universally seen 

occurring within patients. For example, patients prescribed paroxetine, an anti-depressant of the SSRI 

class, can experience constipation, blurred vision, dizziness and fatigue [22]. In contrast, an 

alternative treatment to depression is plant-based medicine (PBM). It is able to reproduce similar anti-

depressant effects when tackling depression with fewer side effects compared to anti-depressant 

medications [23]. 

PBM is a term used to represent medicines from the earth's natural plant resources [24]. Human 

beings have relied on PBMs to maintain health and treat diseases for centuries, and in recent years, 

more and more researchers have combined traditional plants with modern medicines to achieve 

therapeutic effects [25, 26]. PBM has become an essential direction for exploring new antidepressant 

therapies because of their bioactive ingredients with potentially synergistic effects, less disruptive 

effects, and thus a lower risk of side effects [27]. Numerous studies suggest that plant extracts and 

their bioactive ingredients exhibit antidepressant activity through multiple mechanisms. This review 

discusses monoamine neurotransmitter regulation, neuroplasticity adjustment [28], HPA axis 

hormones adjustment, BDNF regulation [29], oxidative stress and mitochondrial dysfunction 

regulation, gut-brain microbiota regulation and raising mood from anti-inflammatory [30]. 

This review aims to illustrate and summarize various mechanisms whereby PBMs can have 

antidepressant effects, providing a reference for future studies. Plant products have been used to cure 

human diseases for centuries, and these products or analogues are still used to treat various diseases, 

either alone or as part of herbal compositions [31]. A straightforward and comprehensive 

understanding of the mechanisms of PBMs as a therapy offers a new orientation for depression 

research and treatment of patients. 

2. Method 

To collect enough studies of mechanisms of plant-based medicines in treating MDD, a comprehensive 

search was done on databases such as PubMed, Web of Science, Scopus, etc. The search keywords 

included depression, MDD, depression mechanisms, plant-based medicines, plant-based medicines 

antidepressant effect, plant-based medicines antidepressant mechanisms, etc. The cited articles cover 

the period from April 1996 to June 2024. 

To select articles relevant to our objective from the records, the following criteria were used: 

studies that reported the traditional uses, antidepressant mechanisms, and bioactivities of PBMs; 

priority was given to literature published after 2020; priority was given to literature using clinical or 
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animal models; and English abstracts were used for publications that were not written in English. 

Non-English studies and those not meeting the selection criteria will be eliminated. 

3. Result 

3.1. Monoamine neurotransmitter regulation 

The monoamine hypothesis postulates that the underlying pathophysiological mechanism of MDD 

lies in reduced levels of monoamine neurotransmitters in the central nervous system, encompassing 

5-hydroxytryptamine (5-HT), norepinephrine (NE) and dopamine (DA) [32]. Numerous studies have 

shown that 5-HT, NE and DA greatly influence brain regions involved in emotional processing and 

stress regulation [33]. Monoamine oxidases (MAOs), including two isozymes MAOA and MAOB, 

also play a crucial part in catalyzing the oxidation and, thus, degradation of neurotransmitter amines, 

promoting reactive oxygen species (ROS) production in mitochondria and regulating the transmission 

of both monoamine neurotransmitters and oxidative stress in the brain [34]. 

Many antidepressant treatments currently used are developed based on this theory, focusing on 

monoamine targets [35], especially MAOs. Increased oxidative and nitrosative stress constitutes a 

significant etiological factor in the pathogenesis of neurodegeneration and neuronal apoptosis, as well 

as the attenuation of neurogenesis and neuroplasticity [36, 37]. Therefore, MAOs have become the 

major target when designing inhibitors of neurodegenerative diseases, as the inhibition of MAOs 

restrains monoamine degradation, thus leading to an increase in the content of monoamines in the 

brain and ultimately affecting MDD. While these results are promising, recent evidence is also 

shedding light on potential limitations. The use of synthetic medications causes instantaneous changes 

in monoamine levels, their therapeutic effects are observed after weeks of treatment, and most of the 

used MAOs synthetic medicines cause long-term irreversible inactivation [38].  

On the contrary, PBM may have a more temperate effect. Hemerocallis fluva L. is a perennial herb 

of the Hemerocallidoideae family commonly found in Asia [39]. Ancient traditional Chinese 

medicine literature indicates that its roots are beneficial for soothing the spirit and equilibrium of 

temperament, thereby alleviating melancholy. The most effective components closely related to 

antidepression in Hemerocallis fluva L. are kaempferol, anthraquinone and vanillic acid. Kaempferol, 

a type of flavonoid, has been demonstrated to possess potent inhibitory effects on MAOs and 

antioxidant and neuroprotective properties in mouse models [40]. Though human MAOs and mouse 

MAOs have sequence heterogeneity, studies have shown that kaempferol also works as an inhibitor 

of human MAOA [41]. Anthraquinone, an aromatic organic compound, and vanillic acid have proved 

to be potent inhibitors of human MAOs activity, resulting in the reduction of MAOA and MAOB 

levels and exerting an impact on MDD [42]. Also, plant polysaccharides are important bioactive 

components of PBM, and they have antioxidant, anti-inflammatory, antineoplastic, antidepression, 

and other biological activities [43]. Polygonati sibiricum is a traditional medicinal and edible plant 

used to treat MDD, and Polygonatum sibiricum polysaccharides (PSP) is one of its main active 

components. A study showed that PSP has an active antidepressant effect on lipopolysaccharide and 

chronic unpredictable mild stress-induced depression mice models by reversing the decline of 5-HT 

in hippocampal [44]. 

3.2. Hypothalamus-pituitary-adrenal axis regulation 

As a major stress neuroendocrine system, the HPA axis significantly influences the pathological 

development of MDD. When somatic stimuli, such as hunger, inflammation, and perceived 

psychological stress, are received by corticotropin-releasing factor (CRF) neurons, the hypothalamus 

will respond by producing CRF and vasopressin (AVP). CRF and AVP will further stimulate the 

secretion of adrenocorticotrophic hormone (ACTH) in the pituitary gland, which contributes to 
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increasing glucocorticoids and, more specifically, corticosterone (CORT) in rodents and cortisol in 

humans [9]. Numerous studies show that the main hallmark of depression is an excessive secretion 

of cortisol [45]. In the presence of chronic stress, prolonged glucocorticoid production binds to 

glucocorticoid receptors (GR), damaging the hippocampus and locus coeruleus, thus reducing GR 

availability and ultimately disrupting the HPA axis. This leads to cognitive decline, insomnia, and 

low emotional states, thus contributing to the pathogenesis of MDD [46]. 

Current antidepressants work by reducing the concentration of AVP, ACTH and CRF and 

promoting the concentration of GRs. PBM contains a variety of active ingredients that affect the HPA 

axis. Icariin is a flavonoid isolated from Epimedium brevicornum, which was found to inhibit the 

CRF elevation in behavioral despair model mice [47]. Additionally, various plant polysaccharides 

exhibit great potential in regulating the HPA. The PSP [44], Lycium barbarum polysaccharide (LBP) 

[48], Lily polysaccharides (LLP), and Astragalus polysaccharides (APS) were all observed to reduce 

serum CORT levels. Another kind of bioactive ingredient found in PBM is saponins. When CUMS 

rats were administrated with saponins from Panax ginseng, ACTH action in the adrenal gland was 

inhibited, and the modulation of HPA function appeared to cause an anti-depressed-like effect [49, 

50]. What is more, piperine is reported to reduce ACTH and CRF in serum, improving the behavioral 

disorder in rats [51]. 

In summary, these studies support the conclusion that HPA axis dysfunction is related to the 

abnormal concentration of CRF, ACTH, and CORT, and numerous active principles found in PBMs 

may regulate this pathway by adjusting its hormones via multiple mechanisms. Thus, paying more 

attention to the specific PBM and launching further research to extract novel components and 

biochemicals could provide novel treatment options for depression patients. 

3.3. Regulation of immune dysregulation and inflammatory responses 

Another mechanism of the antidepressant effect is the regulation of dysregulation in the cellular 

immune of patients, reducing the release of pro-inflammatory cytokines, such as interleukin (IL)-1b, 

IL-6 and tumour necrosis factor (TNF)-a [52]. These cytokines impair the normal function of neurons 

and affect the transmission of neurotransmitters. Additionally, depression patients have shown higher 

levels of leukocytes, which may also indicate the presence of an inflammatory process [53]. So, PBM 

ingredients with anti-inflammatory effects potentially show antidepressant function; specific 

pathways are described in the following paragraph. 

Several ingredients from PBM are reported to have antidepressant effects through inflammation 

regulation mechanisms. Icariin has shown an antidepressant effect in rat models by inhibiting the 

nod-like receptor protein 3 (NLRP3) - inflammasome/caspase-1/IL-1b axis and nuclear factor kappa 

B (NF-κB) signalling activation, which furtherly causes increased antioxidant levels and anti-

inflammatory effects on brain tissue [54]. Icariin can be extracted in plants from Epimedium. 

Senegenin, a bioactive ingredient in Polygala tenuifolia Willd, has also exerted an antidepressant 

effect in chronic unpredictable mild stress (CUMS) induced mice [55]. Senegenin significantly 

improved the behavioural abnormalities of mice and increased the behavioural score of mice in the 

Sucrose preference test (SPT) by inhibiting the protein activation associated with the NLRP3 

inflammasome pathway and IL-1b secretion [55]. Another antidepressant ingredient is Vanillic acid, 

which originated from Angelica sinensis (Oliv.) Diels. Singh et al. (2015) [56] studied anti-

inflammatory effect of Vanillic acid in mice model, they observed a reduction of TNF-a and 

acetylcholinesterase (AChE), and a increase in antioxidants in mice after Vanillic acid treatment. This 

result revealed the anti-inflammatory effect of Vanillic acid and its antidepressant potential. In 

addition, Ginseng total saponins (GTS), major bioactive components of Panax ginseng C.A. Meyer, 

also have an antidepressant effect. Chronic mild stress (CMS) rats had higher sucrose preference 

index, locomotor activity, and lower latency of feeding in novel environments after GTS treatment 
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[57]. Moreover, 7-day treatments of GTS significantly shortened the immobility time in the forced 

swimming test (FST) in rats [57]. The potential mechanism is the decreased mRNA expression of IL-

1b, IL-6, TNF-a, and indoleamine 2,3-dioxygenase (IDO) in the hippocampus, which ameliorates 

inflammation and further maintains normal neurotransmission [58]. 

Studies that associate depression with immunological and inflammatory changes have a long 

history, which can be traced back to the birth of psychoneuroimmunology in 1975, and new findings 

continue to appear in the 2020s [59]. The mechanism of the antidepressant effect of PBM will 

continue to be explored as the interaction between depression and inflammation becomes clearer. 

3.4. Brain-derived neurotrophic factor regulation 

BDNF is one of the neurotrophic factors (NTFs), which are proteins in the central nervous system 

(CNS) responsible for the growth and maintenance of neurons [60]. BDNF has numerous functions, 

such as synaptic plasticity [61], regulation of mood and depression [62], and new neuron 

differentiation and growth [63]. This protein is distributed in the brain, specifically in the 

hippocampus, basal forebrain, olfactory bulb, and cerebral cortex [61]. BDNF carries out its functions 

by binding and activating the Tropomyosin receptor kinase (Trk) B, which is part of the larger Trk 

receptors, and the p75 neurotrophin receptor (NTR) [29]. Therefore, BDNF promotes neuroplasticity 

and neuronal survival by activating intracellular signalling pathways [64]. Studies have shown the 

connection between psychiatric illnesses (such as depression and schizophrenia) and the alterations 

in BDNF expressions [65]. This is supported by numerous meta-analyses [66] suggesting that patients 

with depression tend to have lower BDNF plasma levels in contrast to a healthy person [67].  

Several PBMs have been reported to increase the levels of BDNF, helping with the treatment of 

depression. One example is Hemerocallis citrina, which is commonly used in Chinese medicine for 

mood disorders and depression [68]. They produce anti-depressant effects and improve the 

functioning of the neurotrophin system [69]. Experiments with a depression rodent model treated 

with Hemerocallis citrina ethanolic extracts (HCE), undergoing the sucrose preference test (SPT), 

showed increased contents of BDNF in the frontal cortex and hippocampus [69]. Another example is 

Gladiolus Dalenii, which is typically used in the west as a cure for central nervous disorders such as 

schizophrenia and depression [70]. Experimental results done on rat models with epilepsy-associated 

depression showcased increased BDNF levels in the hippocampus [71]. Degraded Porphyra are 

bioactive polysaccharides originating from Porphyra Haitanensis and exhibit anti-depressant effects 

when treating depression-like animal models [72]. Based on experimentations done by Yi [72], results 

have shown that degraded Porphyra treatment helps activate the BDNF signalling pathway in mice 

models. Scutellaria baicalensis is widely used in China as herbal medicine and primarily, patients are 

prescribed the plant’s dry roots as a treatment for depression [73]. The main components, baicalin 

and baicalein, have been shown to increase monoamine transmitter brain neurotrophic factor levels 

[74]. Albizia julibrissin is used in clinical practices, exerting anti-depressant responses from animal 

models [75]. According to Huang [75], flavonoids extracted from Albizia julibrissin have 

demonstrated increased expression of BDNF levels and its receptor, TrkB, in the hippocampus. 

3.5. Oxidative stress and mitochondria dysfunction regulation 

Oxidative stress occurs when the normal balance between the production of free radicals (particularly 

ROS) and antioxidant defences is disrupted. The overwhelming ROS and reduced antioxidants are 

mainly characterized by pathological conditions caused by oxidative stress [76]. These extra ROS are 

produced by long-term exposure to environmental factors, like smoking and ultraviolet UV radiation 

[77], and physical or psychological stress [78]. Depression patients are always accompanied by lower 

antioxidant intake (such as Vitamin A, C, E, superoxide dismutase) and glutathione peroxidase (GPx), 
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which greatly influences the pathogenesis and progression of depression. Additionally, some studies 

show that oxidative stress also links with the stress response, neurogenesis, synaptic plasticity’s 

imbalance present, neuroinflammation, serotonergic pathways, and HPA axis [79]. When the 

excessive oxidative stress presence, all these factors are intensified [80]. 

Based on the overall correlation between the various pathways of depression, PBMs show 

antidepressant effect by connecting oxidative stress with other mechanisms, such as increasing the 

level of 5-TH [81], improving the negative feedback of HPA [82], reducing the level of inflammation 

[83], and increasing the level of BDNF, affecting neuroplasticity in the end [84]. For instance, 

Centella asiatica, a herbaceous species, employed in clinical and cosmetic treatments for its ability in 

boosting memory, improve brain function and prevent cognitive deficits. Its main bioactive 

constituents are Centalla asiatic triterpenic acid (CATA), asiatic acid (AA) and madecassic acid (MA), 

which proved to have not only anti-oxidative effect, but also neuroprotective, anti-inflammatory, anti-

allergic and anti-depressant function [85]. Beyond that, Ginsenoside Rg3 [86], naringenin [87], 

Polygala japonica [88], and silymarin [89] may also improve depression-like behaviors by the anti-

oxidative action. Geniposide [90] and saikosaponin [91] improve the negative feedback of the HPA 

axis in the process of anti-oxidation. Meanwhile, EGb761 [92], an extract of ginkgo biloba leaves, 

which mainly includes quercetin, kaempferol and isorhamnetin, can reduce oxidative stress and thus 

ameliorate lipopolysaccharides-induced depression-like behaviors, resulting the decrease of 

inflammation and CORT release at the same time. The ROS production mainly happens in the cell 

mitochondria. Mitochondrial dysfunction is observed in various brain regions of many MDD patients. 

Preclinical and clinical research indicates that increased oxidative stress is the main reason for 

mitochondria dysfunction in depressed individuals [93]. Additionally, the interaction between 

oxidative stress and mitochondrial dysfunction in patients' brains causes a continuous vicious cycle. 

3.6. Gut microbiota regulation 

PBM can also exert its antidepressant effect by regulating gut microbiota. The mechanism of this 

regulation is the microbiota–gut–brain axis (MGBA) signalling pathway, which impacts mood and 

cognitive performance through immunological-, metabolic-, neurological-, and hormonal-mediated 

approaches [94]. For instance, gut microbiota contributes to the gut homeostasis through direct 

interacting with the intestinal epithelial barrier (IEB), and sysbiosis of gut microbiota induces 

depression-like behavior in rats [94]. MGBA connects gut microbiota and depression, and more and 

more evidence are supporting their association [95]. The following paragraph demonstrates several 

mechanisms of action on the MGBA by PBMs. 

Xiaoyaosan (XYS), a PBM consisting of eight Chinese herbs, including Radix Angelicae Sinensis 

and Rhizoma Zingiberis officinalis recens, had an antidepressant effect in CUMS rats by reducing 

the abundance of Desulfovibrio, thus decreasing lipopolysaccharide, inflammation, and depression 

[96]. Chaihu-Shugan-San (CSS), another PBM composed of seven Chinese herbs, showed depression 

alleviating function in mice models through regulation of gut microbiota by reducing NF-κB-

mediated BDNF expression [97]. Other than these herbal compounds, some single Chinese herbs 

have antidepressant effects as well. Bupleurum chinense is a single Chinese herbal medicine derived 

from the roots of the Bupleurum plant [98]. Studies have indicated that Bupleurum chinense had an 

antidepressant effect in mice by regulating the composition of intestinal flora [99]. Turmeric, where 

curcumin is the main bioactive ingredient, also decreased depressive-like behaviors of mice, through 

regulation of gut microbiota with the involvement of supraspinal serotonergic system and 

downstream gamma-aminobutyric acid (GABA)A receptor [100]. PBMs like single Chinese herbs 

and Chinese herbal compounds have proved beneficial in treating depression in rats, providing 

evidence for future studies of depression therapy [94]. 



Proceedings	of	the	3rd	International	Conference	on	Modern	Medicine	and	Global	Health
DOI:	10.54254/2753-8818/2025.24199

16

 

 

3.7. Neuroplasticity 

Neuroplasticity, or neural plasticity, is the ability of the brain to develop new neuronal connections 

in response to changes in the body and environment [101]. There are three aspects of neuroplasticity: 

synaptic plasticity, structural plasticity, and functional plasticity [102]. According to Abbott & Nelson, 

synaptic plasticity refers to the changes taking place in synapses, which are junctions between neurons 

where communication occurs [103]. Structural plasticity is the physical changes occurring in the 

structure of the neurons and their networks in order to adapt to intrinsic and extrinsic factors [104]. 

Functional plasticity is the brain's ability to move the functions of a damaged area into a non-damaged 

area, typically in response to an injury [105]. 

Neuroplasticity occurs primarily in two regions within the brain: the hippocampus, responsible for 

memory and learning [106], and the prefrontal cortex, essential for attention and memory regulation 

[107,108]. In the hippocampus, it has been demonstrated that decreased hippocampal volume is 

associated with MDD [109]. One possible explanation for that is that the damage done to the 

hippocampus is due to the boosting of glucocorticoids (steroid hormones) during depressive episodes 

[110]. Mood changes and memory loss often occur in depressed patients [111] as the hippocampus 

plays a vital role in memory and learning [106]. On the other hand, volume reduction in the prefrontal 

cortex occurs due to the disruption of neurons and their networks in depression [112]. A reduction in 

glutamate metabolism in the GABAergic pathway was demonstrated in mouse models with stress-

induced depression [113]. 

A PBM that enhances neuroplasticity is Lycium barbarum, which is widely used in Asian countries. 

Its effectiveness has been found in the hippocampus of rats, reducing depression-like symptoms by 

enhancing synaptic plasticity [114]. Although there is a lot of research done on the mechanism of 

neuroplasticity, more research needs to be done due to the lack of PBMs associated with 

neuroplasticity to help patients have a better understanding of the benefits of PBMs in treating major 

depressive disorder. A summary of mechanisms is shown in Table 1. 

Table 1: PBMs and corresponding mechanisms of antidepressant effect 

PBM Source Mechanism References 

Anthraquinone Hemerocallis fluva L. Monoamine neurotransmitter regulation [42] 

Kaempferol Hemerocallis fluva L. Monoamine neurotransmitter regulation [40] 

Icariin 
Epimedium 

brevicornum 
HPA axis regulation [47] 

  Inflammation regulation [54] 

PSP Polygonatum sibiricum 
Monoamine neurotransmitter regulation [44] 

HPA axis regulation [44] 

LBP Lycium barbarum 
HPA axis regulation [48] 

Neuroplasticity [114] 

LLP Lily HPA axis regulation [67] 

APS Astragalus HPA axis regulation [67] 

Saponins 
Panax ginseng HPA axis regulation [49] [50] 

 Inflammation regulation [57] 

Vanillic acid Angelica sinensis Inflammation regulation [56] 

  Monoamine neurotransmitter regulation [42] 

Senegenin Polygala tenuifolia Inflammation regulation [55] 

Centella asiatica Centella asiatica Oxidative Stress regulation [85] 

 EGb761 Ginkgo biloba Oxidative Stress regulation [92] 

XYS PBM compound Gut microbiota regulation [96] 

CSS PBM compound Gut microbiota regulation [97] 

Bupleurum chinense Bupleurum plant Gut microbiota regulation [99] 

curcumin Turmeric Gut microbiota regulation [100] 
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piperine piper nigrum L HPA axis regulation [51] 

Hemerocallis crtrina Hemerocallis crtrina BDNF regulation [115] 

Gladiolus Dalenii Gladiolus Dalenii BDNF regulation [71] 

Porphyra 
Haitanensis 

Porphyra Haitanensis BDNF regulation [72] 

Scutellaria 

baicalensis 
Scutellaria baicalensis BDNF regulation [116] 

Albizia julibrissin Albizia julibrissin BDNF regulation [75] 

4. Discussion 

In the anti-depression actions of PBMs, serotonergic, dopaminergic, and noradrenergic systems play 

an important role. PBMs' monoamine control mechanism is primarily influenced by the suppression 

of the monoamine oxidase response and increased synaptic monoamine availability. The melioration 

effect of PBMs is intimately connected to the normalization of HPA axis dysfunction, as the HPA 

axis plays a critical role in the pathogenesis of depression. Besides, PBMs that can reestablish neural 

plasticity, increase BDNF, and reduce nerve harm caused by negative stimuli are more likely to help 

people recover from depression since impaired neuroplasticity and reduced BDNF is a critical aspect 

of the brain in response to depression. Additionally, it is well acknowledged that inflammation and 

reduced immunity, which are common processes in many illnesses, play an important role in the 

development of depressive disorders, so anti-inflammatory PBMs have the potential to treat MDD. 

Last but not least, Some PBMs can alleviate depressant symptoms by regulating gut microbiota or 

mitochondria dysfunction. Multiple studies have shown that PBMs have many advantages, including 

comprehensive disease intervention [117] and alleviation of side effects caused by single-link action 

[118], so PBMs have the capacity and potential to work synergistically in the treatment of depression. 

For example, Hemerocallis can treat MDD through neurotransmitter regulation and BDNF modulate, 

and PSP regulate HPA axis and monoamine neurotransmitter to have antidepressant effects. Another 

sample, Schizandra chinensis (Turcz.) Baill., which has many active ingredients, including 

schizandrin A (Sch A), schizandrin B (Sch B), schizandrin C (Sch C), schisantherin A (STA), 

schisandrin (SCH), α-isocubebenol (ICO), gomisin A and polysaccharides, can treat MDD through 

antioxidative effect, regulation of monoamine neurotransmitters and modulation of BNDF [119-121]. 

A study also found that Sch A, a predominant ingredient of lignans in Schizandra chinensis, exhibits 

a pronounced antidepressant effect on lipopolysaccharide induced depression in mice models by 

modulating intestinal microbiota and suppressing TLR4/NF-κB signal pathways in the hippocampus, 

thereby diminishing neuroinflammation [122]. Rutin, a mainly flavonoid quercetin found in 

Schizandra chinensis fruit, was proved to have an effect on neurodegenerative disorders including 

MDD, Alzheimer’s disease, and Parkinson’s disease [123]. Based on the samples discussed above, 

we can see that PBM treatments for MDD are collaborative (Fig. 1).  

Table 1: (continued) 
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Figure 1: The mechanisms of PBMs and the interaction between them. The internal and chronic stress 

and diet stimulate the main axis, like the HPA cortex axis and brain-gut axis, causing some domain 

neurotransmitters (ACTH, CORT) to increase and disorder in tryptophan metabolism (TRF) 

/kynurenine pathway (KP). Additionally, the metabolic products kynurenic acid (KYNA) 

(neuroprotective) and quinolinic acid (QUIN) (neurotoxic) are accumulated at different levels (QUIN 

is more than KYNA), affecting other mechanisms like monoamine (5-TH) and neuroinflammation. 

PBMs function with an antidepressant effect by inhibiting these pathways 

Through the results, it is clear that PBM can work on multiple targets, which significantly improves 

the symptoms of MDD compared with a single antidepressant. Except for collaborative and multi-

targeted effects, PBM shows great potential in other chronic diseases and complications, indicating 

it can be used for personalized treatment in specific patients. The current synthetic antidepressants 

are often accompanied by certain physiological side effects, including dizziness, insomnia, and dry 

mouth. PBM, as an internal regulatory agent, can significantly alleviate these symptoms, thereby 

achieving a more comprehensive and effective antidepressant outcome. It also provides a gentle 

alternative for individuals who are allergic to synthetic antidepressants. 

There are various limitations found in both PBMs and the mouse model behavioural studies used 

to test the mechanisms of PBMs. One limitation of PBMs is the need for more standardisation and 

their likeability to be affected by various factors such as medicine cultivation, geographical location 

and seasonal harvest [124]. Since only active constituents are extracted from plant sources to make 

up for the PBMs taken by patients, it is important to standardise them to ensure the quality of the raw 

materials used [125]. Subsequently, PBMs need to be taken longer than anti-depressants to be 

effective and exert anti-depressant effects. An example is St. John's Wort, which needs to be taken 

between 2-6 weeks to have therapeutic effects. Furthermore, access to PBMs still needs to be 

improved for a certain audience due to the higher cost if taken long-term. And healthcare and 

insurance typically only covers the expenses of anti-depressants as medication for MDD, there is a 

difficulty for patients to pruchase PBMs. Mouse models are frequently used in behavioural studies, 

especially in psychiatric disorders such as depression, to test the effectiveness and safety of bioactive 

compounds in clinical trials [126]. However, the limitations and shortcomings are constantly 

questioned due to the reliability of the results and the ethical concerns about using animals as subjects 

of research [127]. The poor reproducibility of the mice model results in humans [128] is supported 

by researchers finding a weak correlation between humans and mice in a study comparing their 

immune responses [129]. Moreover, the lack of reliability of the data can be due to the variations in 

the experimental laboratory of the mouse and the genetic differences occurring within the genetically 

modified mice [128]. On the other hand, the use of animal models raises ethical issues with little 
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amount experiments violating the 3Rs, neglecting proper treatments on experimental animals [130]. 

According to the National Health and Medical Research Council (2019), the 3Rs stand for 

replacement, reduction and refinement, accounting for the care of animals.  

Given the above limitations, future research could follow the following directions as 

improvements. First, long-term double-blind, clinical, if possible, experimental studies should be 

carried out to study the antidepressant effect, efficacy, and safety of PBM on patients. And some of 

the trials using mice model should be ethically redesigned to follow the 3Rs principle. In addition, it 

is significant to deepen the research on the synergistic effects of different PBMs, furtherly 

demonstrating their interactive mechanism. Multiomics technology has been reported to be beneficial 

in studies of TCM mechanisms [98], which could be an inspiration for similar research on PBMs. 

What is more, PBMs usually aim at multiple targets and exert comprehensive effects in the treatment 

of depression. Thus, an exact identification of active ingredients and a standardization of chemical 

composition are needed to benefit industrial production and clinical application. 

5. Conclusion 

This review illustrated and summarized seven different mechanisms of antidepressant effect from the 

perspective of PBMs, aiming to provide an integral guide for future studies. After analyzing the 

literature, this review found that these mechanisms showed their own characteristics and somehow 

interacted with each other, exerting the antidepressant effect holistically. Some limitations of studies 

in this area also needed to be addressed, which could be further research goals. Only when the efficacy 

and safety of PBM are fully confirmed can it be popularized in the market and help patients with 

depression. 
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