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Abstract: High Performance Computing (HPC) refers to the use of powerful computers and 

advanced computational techniques to solve complex problems and perform large-scale 

processing tasks at high speed. As HPC technology development advances, emission from 

HPC began to raise numerous environmental concerns, such as carbon emissions, global 

warming, resource consumption, etc. This study focuses on the environmental impact of the 

HPC industry. First, the environmental impact of HPC was evaluated. We considered the two 

indicators of HPC energy, Full Capacity and Average Utilization Rates, to understand and 

define environmental problems that HPC energy consumption can cause, such as E-Waste.     

Secondly, we used the time series prediction model with the Transformer architecture to 

predict and analyze the carbon emissions from HPC energy consumption. Among them, we 

first obtained the carbon emission data of different sources of HPC energy composition 

through data collection. Our main data comes from the Kaggle machine learning platform. 

Our data set mainly records the HPC energy emissions in the United States and different 

energy mixes. Then, after constructing the transformer model, we let the model predict HPC 

carbon emissions through data analysis. Finally, we calculated the global temperature 

increase caused by HPC carbon emissions and the subsequent environmental problems 

through the prediction results. We also used the Transformer model to predict the amount of 

carbon emissions in 2030 caused by HPC and the possible environmental impacts it might 

have, in order to help environmental protection organizations around the world take 

appropriate measures. 

Keywords: HPC Carbon Emissions, Transformer Forecasting, Computational Sustainability, 

Energy Comsumption 

1. Background 

The advent of High Performance Computing (HPC) marks the beginning of a new era of technological 

use. Its applications range from cancer treatment and genetic engineering, such as CRISPR, to cryp-

tocurrency mining, such as Bitcoin, and to autonomous vehicle technology. Comprised of a multitude 
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of high-speed computer servers, it is able to divide the workload to several different servers, which 

allows it to complete rigorous tasks way faster. However, at the same time, its energy consumption, 

associated with carbon emissions, dramatically impacts the environment. The environmental impacts 

of HPC include, but are not limited to, excessive carbon emissions, water usage, electronic waste, 

damage to air quality, and resource depletion. As for carbon emissions, because of the high energy 

consumption of HPCS and the dependence of data centers on electricity, the main methods of 

producing electricity at present are burning fossil fuels or using nuclear reactions to drive heat engines. 

The demand for electricity by HPCs undoubtedly leads to the burning of more fossil fuels, which 

further leads to the release of too much greenhouse gas and accelerates the process of global warming. 

In addition, fossil fuels contain sulfur, which will produce toxic sulfur dioxide when burned, causing 

acid rain and destroying the ecological balance. In order to ensure the normal operation of HPC data 

centers, a large amount of water is used to cool them and keep them at a constant temperature, which 

puts a lot of pressure on some dry areas. For example, in Arizona, a dry region with limited water 

resources, Google’s data center will use more than 1 billion gallons of water from the Missouri River 

or alluvial Missouri River in 2021. This has a negative effect on the local water supply and the 

environment. In addition, the used water will be discharged into the environment, and if the treatment 

of this water is neglected, chemicals and radioactive elements will enter the water sphere and pollute 

the water source. Even if some of the polluted wastewater seeps into the ground, it will cause hidden 

dangers for local residents to drink water. In the following research, we completed the assessment of 

the impact of HPC on the environment and the development trend and solutions in the future. 

2. HPC environmental impacts 

2.1. Impact overview 

Before we can truly understand the impact of HPC carbon emissions, we need to understand two 

factors: Full Capacity and Utilization Rates. Full Capacity Definition: Full capacity is defined as the 

consumption of the HPC operating at the calculated load limit, where all components of the HPC are 

working at maximum efficiency. 

Average Utilization Rates: The average utilization rate is the average consumption generated 

during HPC operation, reflecting the consumption situation more accurately since HPC does not 

maintain full capacity at all times. 

Afterwards, we collected reliable data through official channels and analyzed environmental issues 

by calculating the carbon emissions caused by energy. 

2.2. Data collection and variables 

Before building the model, we need to collect reliable data for calculation and analysis. In the process 

of collecting data, we mainly collected the following variables in Table 1. 

Table 1: Definitions of variables used in the calculations 

Variable Description Unit 

E Total energy MWh 

P Full load power MW 

U Average utilization rate Range (0 to 1) 

T Total number of hours per year Hours 

 

The full load power of the HPC system, "Frontier," located at Oak Ridge National Laboratory in 

the United States [1], is 21.1 MW according to Top500.org. The average utilization rate of HPC 
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systems typically ranges between 30% and 60%, as reported by IDC. The total number of hours in a 

year is 8,760. 

3. Modeling 

3.1. Model overview 

Machine learning mainly uses a large amount of data to help us make predictions and decisions. In 

this study, the main task of this problem is to predict the environmental impact of HPC energy 

consumption and the future impacts [2]. Therefore, this study decided to mainly use machine learning 

and deep learning methods for prediction, which are well suited for prediction tasks. 

In this study, the prediction model we mainly used is Transformer, a large deep learning model 

invented by Google researchers in 2017. The Transformer model was originally designed for natural 

language processing tasks, but because it can handle long-term dependencies and capture complex 

temporal patterns, it has shown significant results in time series prediction [3]. Compared with 

traditional models (such as ARIMA or LSTM), Transformer does not need to explicitly decompose 

time series or handle long sequence dependencies, and can efficiently process sequences of any length 

by relying on the self-attention mechanism [4]. 

Our team used the Transformer model to analyze a large number of data sets, and then gave the 

corresponding predictions for HPC carbon emissions and carbon emissions from now to 2030. The 

Transformer architecture has shown good performance in time series data like the ones presented, 

and our training is shown to be effective, with a low loss at the end. In our future predictions, we have 

explored more future laws of carbon emissions through Transformer, which will be discussed later. 

We have also added the impact of the variable "renewable energy" on carbon emissions, as well as 

deeper environmental impacts. Through the completion of these tasks, Transformer has demonstrated 

extremely strong processing capabilities. 

3.2. Transformer model for HPC environmental impacts 

3.2.1. Data and variables 

In order to objectively determine the environmental impact of HPC energy consumption on overall 

carbon emissions, this study first collected data on carbon emissions in different regions of the United 

States. In the process of collecting data, we found reliable data on the Kaggle machine learning 

platform. This dataset fully meets the requirements of our model and includes the total carbon 

emissions generated by different energy sources in different regions from 1970 to 2018 [5]. Data on 

carbon dioxide emissions for several U.S. states starting in 1970 are included in this dataset. In Table 

2, the information is categorized by fuel type (coal, petroleum, natural gas, and all fuels combined), 

state, and sector (residential, commercial, transportation, electric power, and industrial). Millions of 

metric tons of carbon dioxide are used to measure the emissions. 

Table 2: Features of the dataset 

Index Feature Description 

1 year The year for which the emissions data is provided (e.g., 1970) 

2 state-name The name of the     U.S. state (e.g., Alabama, Alaska, Arizona) 

3 sector-name The sector for which the emissions data is provided 

4 fuel-name The type of fuel contributing to the carbon dioxide emissions 

5 value 
The carbon dioxide emissions value in million metric tons for the specified year, 

state, sector, and fuel type. 
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The following Table 3 is the original data of the dataset, which shows some sample data from the 

dataset. 

Table 3: Sample data from the collected dataset 

Index year state-name sector-name fuel-name value 

1 1970 Alabama 
Industrial carbon dioxide 

emissions 
Coal 26.72151 

2 1988 Montana 
Transportation carbon dioxide 

emissions 
Natural Gas 0.12184 

3 2004 Nevada 
Electric Power carbon dioxide 

emissions 
Coal 18.047908 

4 2008 Pennsylvania 
Commercial carbon dioxide 

emissions 
Petroleum 3.218243 

5 2017 Alaska 
Industrial carbon dioxide 

emissions 
Natural Gas 14.143605 

 

In order to make the Transformer better trained, the original data set of this study was processed 

to make the model training more efficient. This study designed training and test data suitable for the 

model according to the requirements of the topic, with the following features In the Table 4, we 

presented features of the expected dataset. The feature "HPC Emissions" of this dataset is the target 

variable, and we need to build a model to successfully predict HPC emissions by analyzing emissions 

from different energy sources and encode "year" as a time series feature, or use positional encoding 

to make the model aware of the time order. Through the computer’s built-in data set calculation tool, 

we finally succeeded in obtaining the ideal training and test data. Here are some samples in Table 5. 

Table 4: Features of model training dataset and testing dataset 

Index Feature 

1 year 

2 Coal Emissions Global 

3 Natural Gas Emissions Global 

4 Petroleum Emissions Global 

5 Total Emissions 

6 HPC Emissions 

Table 5: Sample data from the final training data and testing data 

Index year 
Coal Emissions 

Global 

Natural Gas_ 

Emissions 

Global 

Petroleum 

Emissions 

_Global 

Total_ 

Emissions 

HPC_ 

Emissions 

1 1970 329.553989 321.6906864 561.8159956 1213.060671 0.076731953 

2 1971 313.1833886 332.9252404 584.6388226 1230.747452 0.085310586 

3 1972 314.6460623 325.1408023 605.6805361 1245.467401 0.094848309 

4 1973 346.8467869 333.1847816 658.5826759 1338.614244 0.10545235 

5 1974 328.6327001 310.9118498 612.0763559 1251.620906 0.117241923 
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3.2.2. Model architecture for generating outputs 

The Transformer model is based on the Encoder-Decoder Architecture, but in many practical 

applications, such as regression tasks or sequence prediction tasks, only the encoder part is usually 

used. The role of the encoder is to map the input sequence to a latent space representation, and then 

generate the target sequence through the decoder. In order to apply it to the carbon emission prediction 

problem, we will only focus on the encoder part [3]. 

 

Figure 1: An overall structure of transformer model 

The self-attention mechanism allows each element in the input sequence to perform a weighted 

sum on other elements in the sequence, allowing the model to capture long-range dependencies. The 

core formula of self-attention is as follows: Given an input sequence 

𝑋

= [

 𝐶𝑜𝑢𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝐺𝑙𝑜𝑏𝑎𝑙 1  𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝐺𝑎𝑠 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝐺𝑙𝑜𝑏𝑎𝑙 1 …  𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 1
 𝐶𝑜𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝐺𝑙𝑜𝑏𝑎𝑙 2  𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝐺𝑎𝑠 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝐺𝑙𝑜𝑏𝑎𝑙 2 …  𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 2

⋮ ⋮ ⋱ ⋮
 𝐶𝑜𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝐺𝑙𝑜𝑏𝑎𝑙 𝑇  𝑁𝑎𝑡𝑢𝑟𝑎𝑙𝐺𝑎𝑠 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠_𝐺𝑙𝑜𝑏𝑎𝑙 𝑇 …  𝑇𝑜𝑡𝑎𝑙 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 

] 

where 𝑇 is the number of time steps. Here we will let math 𝑏𝑓𝑥𝑖 represent each element. 𝑥𝑖 ∈ 𝑅𝑑 , it 

is mapped into Query, Key, and Value vectors as follows: 

𝑄𝑖 = 𝑥𝑖𝑊
𝑄 ,  𝐾𝑖 = 𝑥𝑖𝑊𝐾,  𝑉𝑖 = 𝑥𝑖𝑊

𝑉 

where 𝑊𝑄 ∈ 𝑅𝑑×𝑑𝑘 , 𝑊𝐾 ∈ 𝑅𝑑×𝑑𝑘 , and 𝑊𝑉 ∈ 𝑅𝑑×𝑑𝑣 are learnable weight matrices. 

The attention score between query 𝑄𝑖 and key 𝐾𝑗 is calculated using the scaled dot product: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑆𝑐𝑜𝑟𝑒 (𝑄𝑖, 𝐾𝑗) =
𝑄𝑖𝑗⊤

𝐾

√𝑑𝑘

 

The attention weights are obtained by applying a softmax function over the scores: 
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𝛼𝑖𝑗 =

𝑒𝑥𝑝 (
𝑄𝑖𝑗⊤

𝐾

√𝑑𝑘

)

∑ 𝑒𝑥𝑝𝑛
𝑘=1 (

𝑄𝑖𝑘⊤
𝐾

√𝑑𝑘

)

 

where 𝛼𝑖𝑗 represents the attention weight of 𝑥𝑗 with respect to 𝑥𝑖 . 

The output of the attention mechanism for 𝑄𝑖 is computed as: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑂𝑢𝑡𝑝𝑢𝑡 (𝑄𝑖, 𝐾, 𝑉) = ∑ 𝛼𝑖𝑗

𝑛

𝑗=1

𝑉𝑗 

To enhance the model’s capacity, multiple attention heads are computed in parallel. Each head is 

defined as: 

ℎ𝑒𝑎𝑑ℎ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑄
𝑄𝑊, ℎ𝐾

𝐾𝑊, ℎ𝑉
𝑉𝑊) 

where ℎ represents the index of the head, and ℎ𝑄
𝑊, ℎ𝐾

𝑊 , and ℎ𝑉
𝑊 are the weight matrices for the ℎ -th 

head. 

The outputs of all heads are concatenated and linearly transformed: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑𝐻)𝑊𝑂 

where 𝑊𝑂 is the weight matrix for output projection. 

After each layer of self-attention, we have a feed-forward neural network to further process the 

features of each time step. Each time step 𝑥𝑖 is processed independently by the feed-forward network, 

which usually consists of two fully connected layers and an activation function. 

The feed-forward network applies a two-layer transformation with a ReLU activation: 

𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 

where 𝑊1 ∈ 𝑅𝑑×𝑑𝑓𝑓 , 𝑊2 ∈ 𝑅𝑑𝑓𝑓×𝑑 , and 𝑏1, 𝑏2 are bias vectors. 𝑑𝑓𝑓 is the hidden dimension of the 

feed-forward network. 

The Transformer model does not have a built-in mechanism for handling sequential information, 

so positional encoding is needed to inject the positional relationship of each time step. A common 

practice is to use sine and cosine functions to generate positional encodings. 

To introduce positional information into the model, we use sine and cosine functions: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

100002𝑖/𝑑
) ,  𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (

𝑝𝑜𝑠

100002𝑖/𝑑
) 

where pos is the position index, 𝑖 is the dimension index, and 𝑑 is the input dimension. 

In order to avoid gradient disappearance and speed up the training process, the Transformer model 

uses residual connection and layer normalization. 

Each sub-layer in the Transformer is wrapped with a residual connection and layer normalization: 

𝐿𝑎𝑦𝑒𝑟_𝑂𝑢𝑡𝑝𝑢𝑡 =  𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑥 +  𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 (𝑥)) 

Layer normalization is computed as: 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑥) =
𝑥 − 𝜇

𝜎
⋅ 𝛾 + 𝛽 

where 𝜇 is the mean of 𝑥, 𝜎 is the standard deviation, and 𝛾 and 𝛽 are learnable parameters. 

For carbon emission prediction, the mean squared error (MSE) loss is typically used: 
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𝐿 =
1

𝑁
∑(𝑦 𝑡𝑟𝑢𝑒 ,𝑖 − 𝑦 𝑝𝑟𝑒𝑑 ,𝑖)

2
𝑁

𝑖=1

 

where 𝑁 is the number of samples, 𝑦 𝑡𝑟𝑢𝑒 ,𝑖 is the ground truth value, and 𝑦 𝑝𝑟𝑒𝑑 ,𝑖 is the predicted 

value. 

Once trained, the model can make predictions based on carbon emissions data. Given a series of 

input features (such as coal emissions, natural gas emissions, oil emissions, etc.), the model will 

output the corresponding HPC emissions. 

4. Results and discussion 

Before formally training the model, we need to preprocess the data. In the preprocessing process, we 

use Python’s powerful built-in Pandas and Numpy libraries to help us. After importing the data, we 

first classified the data set, where "HPC_Emissions" is the target variable and the rest are prediction 

features. In addition, since each feature is a numerical type and the gap between each value is too 

large, in order to facilitate model training, we converted all numerical data into values in the range of 
[0,1] . The technology used is normalization. 

After that, we used the Pytorch framework to obtain a dataset suitable for Transformer model 

training. Pytorch provides the Dataset class, which allows us to customize the way we access and 

manage data. Therefore, we can customize how to load data, and use DataLoader to load data in 

batches and automatically shuffle the order, and easily adjust the data acquisition logic, such as adding 

data enhancement and handling missing values [6]. 

We then used the Pytorch framework to write the Transformer model code, and then trained and 

evaluated the model, obtaining the following results [7]. 

 

Figure 2: Actual results VS. predicted results of HPC emissions 

From the table, we can clearly see that the training of the model is quite effective, and the 

difference between the model’s prediction results and the actual results is minimal, confirming the 

effectiveness of the Transformer architecture in this task. 

Once the model successfully predicts HPC carbon emissions, we can find out the environmental 

impacts corresponding to different values based on the world’s carbon emissions values. The main 

impact of carbon emissions is an increase in global temperature, so we need to know how much 

temperature increase is caused by each million metric tons (the unit of the dataset) of carbon emissions. 
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To estimate the temperature increase per million metric tons (Mt) of carbon dioxide emissions, we 

rely on the Transient Climate Response to Cumulative Emissions (TCRE), which quantifies the 

relationship between cumulative carbon dioxide emissions and global temperature rise. TCRE 

typically ranges from 0.8 degrees Celsius to 2.5 degrees Celsius per 1,000 Gt of carbon dioxide 

emissions. Here is the calculation process [8]: 

 𝛥𝑇 =
𝑇𝐶𝑅𝐸

1000
 (1) 

 𝛥𝑇 =
0.8

1000
−

2.5

1000
= 0.0008 − 0.0025 (2) 

So after calculating the carbon emissions per million metric tons, we can plug in the model’s 

predicted data and find the temperature increase caused by HPC carbon emissions each year like in 

Table 6. 

Table 6: Sample intervals of the temperature resulted from HPC emissions 

Index Year HPC Emissions Temperature Increased Interval 

1 1970 0.14344907470158885 [0.00011476,0.00035862] 
2 1971 8.958732 [0.007167,0.02239] 
3 1972 10.605084197731285 [0.008484,0.026513] 
4 1973 7.189039210726513 [0.005751,0.017973] 
5 1974 0.36944066346092996 [0.00029555253,0.00092360166] 

 

By calculating the temperature increase caused by HPC in all years of the dataset, we concluded 

that the temperature increase caused by HPC as a whole is in the range of [0.0001,0.5] . Therefore, 

according to the International Energy Agency and the Environmental Protection Organization, we 

can summarize the following environmental impacts caused by HPC [9]: 

• Coral Bleaching: At a rise of 0.5∘𝐶 , coral reefs begin to experience more frequent bleaching 

events, particularly in tropical regions. While this is less dramatic than a 1∘𝐶 increase, it still 

stresses coral ecosystems, which are highly sensitive to temperature changes 

• A 0.5∘𝐶  temperature rise accelerates the melting of glaciers and polar ice sheets. While the 

contribution to sea level rise might still be small in this range, it marks the beginning of significant 

long-term changes . 

• Even a modest increase in global temperature increases the frequency and severity of heatwaves. 

In the range of 0∘𝐶 to 0.5∘𝐶 , some regions may start seeing more frequent and longer heatwaves, 

especially in parts of Europe, North America, and Asia . 

• A 0.5∘𝐶 increase can already result in higher incidences of heat-related illnesses, particularly in 

urban areas. Vulnerable populations, such as the elderly and low-income groups, are at increased 

risk. 

The 0∘𝐶 to 0.5∘𝐶 increase may seem small, but it marks a significaere the effects of climate change 

begin to manifest more visibly, especially in vulnerable regions [10]. As the world approaches these 

levels, the cumulative effects will intensify, potentially leading to irreversible changes in ecosystems, 

human systems, and the climate itself. 

Considering the complex trend shown in the data and the small number of training data, the model 

chosen for predicting carbon emission till 2030 is a transformer. The transformer is constructed with 

a dropout rate of 0.1 to prevent overfitting, and the Adam optimizer with a learning rate of 0.001 for 

training. The dataset is split with 80% of it used for training. The emission data is also scaled for 
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better performance. The model is trained over 50 epochs. Afterwards, the model is predicting with a 

sequence length of 5 and re-scaling using MinMaxScaler. 

Below is a graph to showcase the predicted carbon emission from 2019 to 2030. 

 

Figure 3: Global fuel emission estimations 

As demonstrated above, we can see that future carbon emission is first met with an increase 

followed by reduction. According to data for the International Energy Agency (IEA), energy usage 

from HPC accounts for 1-1.5% of the global energy usage. We can calculate the growth of the HPC 

industry with Compound Annual Growth Rate (CAGR). The CAGR can be calculated with the 

following formula: 

𝐶𝐴𝐺𝑅 = (
𝐹𝑉

𝑃𝑉
)

1
𝑛

− 1 

where: 

• 𝐹𝑉 is the final value, 

• 𝑃𝑉 is the present value, 

• 𝑛 is the number of periods. 

With HPC having an CAGR of 11.18% [9], we can calculate the HPC usage in 2030 with the 

following formula: 

𝑈2030 = 𝑈0 × (1 + 𝑟)𝑡 

where: 

• 𝑈2030 is the projected HPC usage in 2030, 

• 𝑈0 is the current HPC usage, 

• 𝑟 is the CAGR (0.1118), 

• 𝑡 is the number of years from the current year to 2030. 

We can see that in 2030 the energy usage from HPC would account for 2.6% of the global 

electricity, and by extension of the carbon emission. Analysing the trend from the transformer model, 

we can also get the source energy mix of the HPC industry, shown below: 
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Figure 4: Global fuel emission makeup 

From the Pie Chart above, we can clearly see that Petroleum and Coal account for the largest share 

of energy consumption, so we believe that global factories should find ways to reduce the production 

of oil and coal raw materials in the future. To verify this suggestion, we did a simulation to observe 

the new 2030 HPC energy consumption and carbon emission forecast by reducing the production of 

oil and coal raw materials. 

 

Figure 5: The new prediction of 2030 emissions 

From the Figure 5, we can see that this suggestion is valid because by reducing the amount of oil 

and coal produced, we can effectively reduce the carbon emissions of global HPC production in the 

future. 

5. Conclusion 

5.1. Strengths of the model 

• Comprehensiveness: This modeling analyzes the impact of HPC on the environment from multiple 

dimensions, including carbon emissions, resource depletion and electronic waste caused 

• by HPC. The data used are sourced from official agencies, such as IEA and IDC, to ensure the 

authority of the data 
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• Accuracy of Prediction: The prediction accuracy is high, and the deviation between the predicted 

value and the actual value in the test stage is low. And it can accurately quantify the environmental 

impact of different energy structures in the future 

• Actionable Insights: Specific indicators are provided. The amount of carbon emission reduction in 

the renewable energy scenario. This helps shape the government’s policy choices, provides clear 

guidance, and estimates the trade-offs between mitigation policies in different circumstances. 

5.2. Weaknesses of the model 

• Emissions Restrictions: HPC energy consumption sometimes not only leads to carbon dioxide 

emissions, but also may lead to the emission of compounds such as methane, nitrous oxide, etc. 

However, due to data limitations, this study only considered the carbon dioxide emissions caused 

by HPC consumption, and chose to ignore other variables. Therefore, this is also a point that our 

model needs to improve. 

• Ignoring Uncertainty Factors: The model simply relies on objective data sets to predict carbon 

emissions, without considering some uncertain factors, such as the impact of economic, military 

and other events on future emissions. This problem also leads to some inaccurate predictions of 

the model for the future. 

• Experiment Environment Limits: For the training of the deep learning large model Transformer, 

we do not have a large dataset to help the model training, and we do not use a GPU that is more 

convenient for model training. Due to the limitations of our model training environment, the model 

did not achieve a higher performance training, which will lead to some relatively inaccurate results. 

• Data Limits: Large deep learning models, especially Transformer, often require a lot of data for 

training. However, since most official data is inaccessible, the volume of training data is limited. 

This is often a disadvantage for training large models and may lead to inaccurate models, etc. 

5.3. Overall conclusion 

This modeling successfully quantifies the impact of HPC on energy consumption and the environment 

and provides valuable analysis and projections for the future. It has the advantage of comprehensive 

analysis, high precision and flexibility. This modeling quantifies the carbon emissions of HPC and 

scientifically illustrates the impact on the environment. Modeling was trained using authoritative 

historical data from the authorities and combined with a variety of scenarios to predict the future 

carbon emissions and environmental impacts of the HPC in 2030 with high accuracy, and to reveal 

the changes in the future environment caused by different energy mix and government choices. 

Through model prediction and data quantification, the ecological risks of HPC are presented and there 

are still areas to be improved, which provides effective help and theoretical support for the further 

development of the international community in this field. In summary, this modeling successfully 

predicted the impact of HPC on the environment and proposed a scientifically based and accurate 

solution. 
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