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Abstract. Under the impetus of the "double - carbon" goal, wind power, as one of the main
forms of new - energy power generation, has been growing in significance. However, the
unpredictability of wind power output has presented difficulties for the secure and stable
operation of the power system as well as real - time scheduling plans. Regarding the issues
that the prediction of wind power output based on the traditional BP neural network has a
slow convergence rate and is prone to getting trapped in local optima, this paper puts
forward a hybrid wind - power prediction model (PSO - BP), where the BP neural network
is enhanced by the particle - swarm optimization (PSO) algorithm. This approach optimizes
the initial weights and thresholds of the BP neural network via the global search of the PSO
algorithm. As a result, it enhances the model's convergence capacity and, to some degree,
circumvents the problem of local optimality.Public wind - power datasets are utilized in the
experiments. The PSO - BP and traditional BP models are trained and tested multiple times
under the same circumstances. The outcomes indicate that, in comparison with the
traditional BP model, the PSO - BP model, while ensuring the convergence speed, mitigates
the local optimization issue of the neural network. It significantly improves the reliability
and precision of the model's prediction results. Moreover, it offers robust technical backing
for the short - term prediction of wind power, which is conducive to improving the power -
system consumption plan and ensuring its safe operation.
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1. Introduction

Guided by the "dual - carbon" objective, China is actively advancing the building of a new power
system. In recent years, China's rich wind resources, predominantly in the northwest and southeast
coastal regions[1], have been vigorously exploited. By the end of 2024, China's cumulative national
power - generation installed capacity is approximately 3.35 billion kilowatts, with the installed
capacity of wind power being around 520 million kilowatts, accounting for roughly 15.52% and
gradually rising to the third position nationwide[2]. Simultaneously, the IEA anticipates that by
2030, the combined share of global wind power and photovoltaic power generation in global power
generation will reach 30%[3]. Due to the uncertainty of wind power and the challenges of large -
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scale storage, precise and effective wind - power forecasting holds great importance for power -
system consumption planning and the safe and stable operation of the power system[4].

Based on the prediction outcomes, current deterministic prediction methods for wind power[5]
can be classified into physical prediction and statistical prediction. Among these, statistical
prediction is a more prevalent approach in the current research domain, mainly encompassing
differential autoregressive moving average (ARIMA)[6], Bayesian optimization[7], and neural
network[8]. Specifically, ARIMA is frequently employed in real - time prediction. However, a low -
order model has poor accuracy, while a high - order one is complex and computationally costly.
Bayesian methods are adept at handling data uncertainty but are highly reliant on prior information,
making their application challenging. Neural networks rely on the capacity for nonlinear mapping to
enhance prediction accuracy but place high demands on hyper - parameter selection, training
resources, and methods.

The PSO - BP (Particle Swarm Optimization - Back Propagation) algorithm employed in this
paper is based on particle - swarm optimization and an error - back - propagation multi - layer feed -
forward neural network, and it is a deterministic prediction model. At first, it makes use of the
particle - swarm optimization algorithm's capacity to quickly find the optimal solution in a high -
dimensional space. This helps in determining good iterative initial values for the inertia weights and
thresholds of the neural network.

Afterward, the BP neural network is trained to boost its wind - power prediction capabilities. To a
certain degree, this speeds up the model's training process and overcomes the problem that the BP
neural network is likely to fall into a local optimum. Experiments show that the model achieves a
higher wind - power prediction accuracy with a smaller number of iterations. As a result, it provides
a dependable foundation for wind - power output, ensuring the stable operation of the power system.

2. Methodology

Artificial intelligence techniques possess significant benefits when it comes to wind power
prediction. Conventional prediction approaches usually struggle to handle the intricate non - linear
traits of wind power. In contrast, artificial intelligence algorithms like the BP neural network are
capable of autonomously discerning the complex mapping connection between input data and output
power. By being trained using a substantial quantity of historical data, the BP neural network has the
ability to construct an accurate prediction model.

2.1. BP

The BP neural network is a type of multi - layer feed - forward neural network, composed of an
input layer, a hidden layer (also known as the implicit layer), and an output layer. These layers are
interconnected via weights. Its learning procedure involves two main processes: the forward
propagation of the signal and the backpropagation of the error.

During the forward propagation, the input signal is processed successively, starting from the input
layer, passing through the hidden layer, and finally reaching the output layer. Let's assume that the
input layer has n nodes, the hidden layer has m nodes, and the output layer has l nodes. The weight
connecting node i in the input layer to node j in the hidden layer is denoted as    , while the weight
from node j in the hidden layer to node k in the output layer is represented by    .

The input to the implicit layer node     is:

wij

vjk

j

netj = ∑n
i=1 wijxi
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After processing by the activation function    , the output of the hidden layer node j is:

Commonly used activation functions such as the Sigmoid function:

The input to the output layer node k is:

The output to the output layer node k is:

When the actual output of the output layer,    , does not match the desired output,    , the error
back propagation stage is entered. Define the error function as:

The error signal is propagated backward along the original connection path through the back-
propagation algorithm, and the weights of each layer are adjusted according to the error gradient
descent method to minimize the error function E. The weight adjustment formula is:

Where η is the learning rate, which controls the step size of the weight adjustment. If the learning
rate is excessively high, it might lead to the algorithm oscillating throughout the training procedure,
thereby making convergence arduous. On the other hand, an overly low learning rate will cause the
training speed to be extremely sluggish.

In actual applications, the adaptive learning rate tactic is frequently adopted. This enables the
learning rate to be adjusted dynamically in accordance with the variations in error that occur during
the training process.

2.2. PSO

The particle swarm optimization algorithm is an evolutionary computation method. As a stochastic
search algorithm grounded in swarm intelligence, it aims to find the optimal solution of a problem
using a mathematical optimization algorithm model that mimics the foraging behavior of a flock of
birds or a school of fish. The PSO commences from a random solution, and through iterative
processes, it hunts for the optimal solution, assessing the solution's quality via the fitness degree.
During the iterative procedure, the algorithm looks for the global optimum by trailing the currently
discovered optimum. It is a parallel algorithm that is straightforward to implement, boasts high
accuracy, and has a rapid convergence rate.

f(⋅) 

yj = f(netj)

f(x) = 1
1+e−x

netk = ∑m
j=1 vjkyj

ŷk = f(netk)

ŷk y∗
k

E = 1
2 ∑l

k=1 (ŷk − y∗
k)

2

Δwij = η ∂E
∂wij

Δvjk = η ∂E
∂vjk
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In the context of the Particle Swarm Optimization (PSO) algorithm, each particle stands for a
prospective solution to the given problem. These particles traverse the search space at a particular
velocity. The adjustment of the particles' velocity and position occurs in a dynamic manner, relying
on the individual extreme value (termed pBest) and the global extreme value (referred to as gBest).
If we consider that the search space has D dimensions, then the position of the     particle can be
depicted as follows:

Velocity is expressed as:

The optimal positions (individual poles) experienced by particle i during the flight are:

The optimal positions (global extrema) experienced by the entire particle population are:

In every iteration, the particle modifies its velocity and position within the solution space (also
known as the search space) based on the subsequent equations:

Speed Update Formula:

Position Update Formula:

Here,      indicates the present iteration count. The inertia weight      plays a crucial role in
determining how much of the particle's previous velocity it inherits. Meanwhile,     and     are the
acceleration constants, commonly known as learning factors.      governs the step - size by which
the particle moves towards its own historical best position, and     does the same for the global best
position.      and      are random values that are evenly distributed within the range     .
These random numbers introduce a stochastic element into the particle's movement, helping the
algorithm explore different regions of the search space.

2.3. Pso-Bp

In the PSO - BP wind power forecasting model, at the beginning, the global search capability of the
PSO algorithm is employed to optimize the initial weights and thresholds of the BP neural network.
The weights and thresholds of the BP neural network are encoded as the position vectors of
particles. The PSO algorithm then iteratively adjusts the positions of these particles, with the aim of
minimizing the prediction error as the objective function. Through this procedure, a more
advantageous combination of weights and thresholds is discovered.

ith

Xi = (xi1, xi2, ⋯ , xiD)

Vi = (vi1, vi2, ⋯ , viD)

Pi = (pi1, pi2, ⋯ , piD)

Pg = (pg1, pg2, ⋯ , pgD)

vij(t + 1) = ωvij(t) + c1r1j(t)(pij − xij(t)) + c2r2j(t)(pgj − xij(t))

xij(t + 1) = xij(t) + vij(t + 1)

t ω
c1 c2

c1

c2

r1j(t) r2j(t) [0,1]
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Subsequently, these optimized weights and thresholds are fed into the BP neural network.
Following this, training and prediction are conducted on the pre - treated wind power data. By
taking these steps, both the global optimization - finding ability of the PSO algorithm and the
nonlinear mapping ability of the BP neural network are fully utilized, thus improving the accuracy
and reliability of wind power prediction.

3. Case analysis

3.1. Data description

To validate the efficacy of the wind power prediction approach founded on the PSO - BP algorithm,
this paper utilizes the public dataset for wind power prediction as the source dataset for the
algorithmic analysis.

3.2. Data preprocessing

Because the adopted dataset contains actual system operation errors, issues such as missing or
abnormal data exist. To guarantee the training accuracy of the PSO - BP model and prevent
abnormal values from negatively affecting the generalization ability of the neural network, the
dataset undergoes pre - processing prior to being used for training. First, the normalization method is
employed to map all data (both inputs and outputs) to the interval of [- 1,1]. This serves to eliminate
the influence of magnitude and modal values, thus accelerating the model's convergence speed.
Second, the processed dataset is split into a training set (the initial 360 sets of time - step data) and a
test set (the final 24 sets of time - step data). These are respectively utilized for model training and
test comparison.

3.3. Evaluation indicators

For a thorough and unbiased evaluation of the PSO - BP model's performance in wind power
prediction, this paper selects the root mean square error (RMSE) and mean absolute error (MAE) as
the metrics for model assessment.

In particular, the root - mean - square error is adept at reflecting the degree of deviation between
the predicted value and the actual value. It is highly sensitive to outliers and can measure the degree
of disparity between them. The smaller the value of the root - mean - square error, the closer the
prediction is to the actual value.

In contrast, the mean absolute error represents the average of the absolute values of the
differences between the predicted values and the true values. It is effective in quantifying the
absolute magnitude of the prediction error. To some degree, it can mitigate the impact of outliers in
individual data points on the overall data scenario. This makes it a robust metric, well - suited for
depicting the overall state of the prediction outcomes.

Then, by the complementary characteristics of the two types of model evaluation indexes, RMSE
and MAE, the prediction accuracy of the wind power prediction model can be evaluated in a more

RMSE = √ 1
n
∑n

i=1 (yi − ŷi)
2

MAE = 1
n ∑n

i=1 yi − ŷi∣ ∣
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comprehensive way.

3.4. Parameter selection

Regarding the BP neural network, the hyperbolic tangent function (tansig) is selected as the
activation function for the hidden layer, and the linear function (purelin) is used as the activation
function for the output layer. To determine the initial values of the remaining hyperparameters, such
as the number of nodes, inertia weights, and thresholds, the PSO algorithm conducts a global search
for optimization.

As for the PSO optimization algorithm, its parameters are set to the default values of the PSO
algorithm function within the Matlab simulation environment. It is important to note that the particle
dimension D is set to 31 in accordance with the formula mentioned earlier.

3.5. Algorithm comparison

The PSO-BP and traditional BP neural network prediction models are now compared with other
related prediction patterns using the same dataset training and controlling the two-dimensional
variables of iteration accuracy and the number of iterations with RMSE and MAE assessment
metrics.

Considering that PSO is not able to completely solve the problem of BP network which is easy to
fall into the local optimum, and at the same time, the test and training results of the algorithm model
are not general. Therefore, in this paper, the PSO-BP and BP algorithms are trained and tested in
Matlab simulation environment using the same dataset for 20 repetitions, and the test results are
recorded and compared with the evaluation indexes.

Table 1: Data comparison results

MAE average RMSE average

PSO-BP 0.1686 0.2414
BP 1.9082 3.7266

It can be seen that, compared with the traditional BP neural network, the introduction of PSO
algorithm to some extent avoids the problem that BP neural network is easy to fall into the local
optimum, so that the model can converge to the global optimal solution faster, thus significantly
reducing the value of the RMSE, MAE, and improving the prediction accuracy.

In addition, the number of iterations for PSO optimization and the chance of outliers in the
MAE/RMSE, without going into the range of the number of overfitting iterations, predicts a
decrease in the probability of outliers as the number of iterations increases.

4. Conclusion

This paper applies a PSO - BP optimized neural network algorithm for real - time short - term wind
power prediction. The PSO algorithm, characterized by its robust global search ability, rapid
iterative convergence speed, and efficient use of computational resources, is harnessed to supply
dependable initial hyperparameter values for the BP neural network. This significantly enhances the
BP neural network's convergence rate and, to some degree, overcomes its tendency to get trapped in
local optima.
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Initially, the wind power dataset in this paper undergoes anomaly correction and normalization,
followed by the completion of the division into a neural network training set and a test set.
Subsequently, the PSO - BP model is trained and tested using this dataset to achieve short - term
prediction of wind power output.

Finally, by contrasting the prediction indices of the PSO - BP model and the traditional BP model
with the same example, it is demonstrated that the PSO - BP model can substantially reduce iteration
time and arithmetic resources while ensuring prediction accuracy. This offers strong technical
support for the safe and reliable operation of the power system when wind power is integrated.
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