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Abstract. Cosmological perturbation theory serves as a fundamental approach for exploring
the development of cosmic structures and the dynamics of the early universe. While linear
(first-order) perturbation theory has been remarkably successful in explaining phenomena
such as the cosmic microwave background (CMB) and the large-scale structure (LSS),
second-order effects—especially those arising from nonlinear interactions—cannot be
neglected. Notably, second-order scalar perturbations have the capacity to generate
gravitational waves via nonlinear couplings, offering additional insight into the early
universe. This study focuses on the theoretical formulation of such gravitational waves,
detailing the perturbative expansion in Newton gauge, the formulation of source terms for
second-order modes, and the application of the transverse-traceless (TT) decomposition
technique.
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1. Introduction

In cosmology, the theory of cosmic perturbations is an important foundation for studying the
formation of cosmic structures and the dynamics of the early universe. The standard cosmological
model holds that cosmic structures originate from tiny density fluctuations on a uniform
background. These fluctuations gradually grow through gravity and eventually form large-scale
structures such as galaxies. [1] Today's observations (such as CMB) verify this process. However,
with the continuous improvement of observation accuracy, especially in the field of gravitational
wave observations, researchers have found that ignoring higher-order nonlinear perturbation effects
may miss important physical information [2]. This paper focuses on second-order scalar
perturbations, but the principles of higher-order perturbations are similar.

Although there already exist many observational and theoretical models regarding scalar
perturbation-induced gravitational waves, there is still a lack of systematic, clear, and accessible
explanations for the formation mechanism of this phenomenon.

In the first-order perturbation theory, scalar, vector and tensor perturbations are decoupled from
each other, and scalar (density perturbation), vector (vorticity) and tensor (gravitational waves)
propagate independently. However, in the second-order perturbation theory, the situation becomes
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more complicated: even if there are only scalar perturbations at first, due to the nonlinear
characteristics of the gravitational field equations, gravitational waves will be generated at the
second order. [3] This effect is called scalar perturbation-induced gravitational waves. Unlike the
primordial gravitational waves, this type of gravitational wave is not a "primordial ripple" left over
from the inflation period, but a "secondary ripple" caused by the uneven distribution of matter in the
later period.

In this paper, we will explore how second-order scalar perturbations appear explicitly in the
Einstein equations in the form of scalar potential functions    and    under the Newtonian gauge,
and further explore how to use the transverse-traceless projection (TT projection) method to
rigorously extract the gravitational wave component from general second-order perturbations.

2. Background

2.1. Perturbation Theory

Perturbation theory analyzes problems by decomposing the physical quantities of a system into
background quantities and small perturbations. In cosmology, this method is widely used in the
evolution analysis of cosmic structures. Specifically, it is to use Taylor expansion to this physical
quantity under a certain background. [4]

For example, the physical quantity Q can be expressed as:

Where   is the background value,    and    is the first-order and second-order perturbation
terms respectively.

Therefore, the perturbation expansion of metric is:

and the contravariant is:

Friedmann–Lemaître–Robertson–Walker(FLRW) Metric and Newtonian Gauge
The FLRW Metric is a metric that describes a uniform, isotropic, expanding (or contracting)

universe. Its standard form is as follows:

where a(t) is the cosmological scale factor, describing the expansion of the universe;    is the
Kronecker delta of the space part, indicating that the space is isotropic and flat; dt and dxidxj are the
time and space micro-elements, respectively. [6]

However, when using general relativity, many redundant degrees of freedom appear. By choosing
a specific gauge (such as the Newtonian gauge), these redundancies can be avoided effectively,
making the calculations more concise and clear. [7]

We use the Newtonian metric.Under this metric, the metric becomes:

ϕ ψ

Q = Q + δQ + 1
2
δQ + …

Q(0) δQ δQ

gμν  =   +   +   +  ⋯

[5]gμν = −hμν − hμν + hμα + …

ds2 = −dt2 + a2 δij dx
idxj

δij

ds2 = − dt2 + a2δij dxi dxj



Proceedings	of	CONF-APMM	2025	Symposium:	Multi-Qubit	Quantum	Communication	for	Image	Transmission	over	Error	Prone	Channels
DOI:	10.54254/2753-8818/2025.GL24541

21

   and    are scalar potentials respectively, with    is the gravitational potential of classical
Newtonian gravity. No tensor perturbation. [8]

Field Equations of General Relativity
The dynamical equations of general relativity, namely the Einstein Field equations, are of the

form:

The left side represents the distribution of matter or field, including the distribution of mass,
energy, momentum, etc. The quantity on the right represents the geometric properties of space-time,
describing the strength and curvature of the gravitational field. Among them,   is the Ricci tensor,
   is the Ricci scalar, and   is the energy-momentum tensor.

And the Ricci tensor is represented by the Christoffel symbol   
Equation:

with    is:

When expanding the disturbance, these quantities also need to be expanded order by order. In the
following chapters, we will continue to discuss the specific forms after expansion and how to derive
the wave equation of gravitational waves.

Transverse-Traceless Projection
In order to extract the effective source term of pure gravitational waves from these generalized

perturbations, the transverse-traceless (TT) projection method must be used.
The transverse-traceless condition is an inherent constraint of gravitational waves, which requires

the tensor perturbation to satisfy:
Transverse:

Traceless:

Specifically, for the term S, its TT projection form is:

In this way, the evolution equation of second-order gravitational waves can be fully expressed as:

ϕ ψ ψ

8πGTμν = Rμν − 1
2 gμνR

Rμν

R Tμν

Γ
λ
μνΓ

λ
μνΓ

λ
μν

Rμν = ∂λ − ∂ν + −

Γ
λ
μνΓ

λ
μνΓ

λ
μν

[9]= 1
2
gλσ

∇ih
(T )
ij = 0

δij = 0

[10]STT
ij (

→
k) = (PilPjm − 1

2
PijPlm)Slm(

→
k)
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Computation of Gravitational Waves Induced by Second-order Scalar Perturbations
We choose the FLRW universe as the background.
The right side of the field equation describes the geometry of spacetime, so first perform a

second-order expansion of the Ricci tensor:

For   , the Ricci tensor is related to the Christoffel symbol, so taking the second order
and substituting it into the Ricci tensor gives:

Only take the second-order contribution   ;

Only take the second-order contribution   ;

In theory, there are two second-order contribution,   and   , however, The FLRW is
spatially homogeneous and isotropic, so its Christoffel symbol only involves the background
quantity. Therefore, when it is multiplied by   , no non-linear combination of scalar perturbations
is generated. [12]

Only take the second-order contribution  ;

Only take the second-order contribution  
Combine theses terms, get:

The Ricci tensor expanded to second order has been derived, and it is evident that both first- and
second-order Christoffel symbols contribute to its structure. To incorporate the scalar potential into
the perturbed metric, explicit forms of these Christoffel symbols are also required.

After obtaining the second-order form of the Ricci tensor, it becomes clear that contributions
arise from both the first- and second-order Christoffel symbols. Accordingly, determining these
terms is necessary for inserting the scalar potential into the metric.

A similar procedure used in deriving the second-order Ricci tensor is applied to the perturbed
metric, allowing us to isolate the contributions from first- and second-order Christoffel symbols.
This leads to the following expressions:

[11]¨
h

(T )
ij + 3H

˙
h

(T )
ij − 1

a2 ∇2h
(T )
ij = STT

ij

Rμν = ++

R
(2)
μν R

(2)
μν R

(2)
μν

∂λ = ∂λ

∂λδ

∂ν = −∂ν

∂νδ

=

Γ ⋅ δΓ Γ ⋅ δΓ

δΓ

δ ⋅ δ

=

δ ⋅ δ.

δ = ∂λδ − ∂νδ + δδ − δδ

δ = 1
2
λσ

δ = 1
2
λσ − 1

2
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The curvature of space is mainly determined by the spatial and time derivatives of the spatial
metric components, and these contributions are mainly represented by $\Gamma^0_{ij}$. By
focusing on computing this component, we can significantly simplify the calculations while
capturing all the necessary physical effects of second-order scalar perturbations on gravitational
waves.

Also, computing all components leads to extremely complex expressions that are not only
inefficient but also unnecessary for our specific purposes.

Substitute   into   :

(Since the FLRW background is selected,    needs to be equal to 0)
Recall the FLRW metric in Newton gauge, we can find:

[Due to the selected FLRW spacetime, assuming that there is no significant anisotropic stress in
the universe, the two potential functions naturally converge, that is,   . [13]

Then, substitute in   :

In   :

In   :

In   :

All the Christoffel symbols have been obtained and can be substitute into the Ricci tensor:

Using Mathematica to calculate, after calculating the time derivative and the space derivative,
and then substituting and simplifying, get:

λ = 0,μ = j, v = i δ, δ

δ = 1
2
λσ

δ = 1
2
λσ − 1

2

σ

00 = −1, 0i = 0, ij = δij

a2

= −2ψ, = 0, = −2a2ψ δij

= −2ψ2, = 0, = −2a2ψ2 δij

ϕ = ψ

δ

δ = − 1
2 ∂0 = − 1

2 ∂0 = 1
2 × 2 δij ∂0 = δij

δ

δ = −

δ

δ = 2a2δij

δ

δ = − + 2a2ψ

δ = ∂λδ − ∂νδ + δδ − δδ

δRij =
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The scalar potential function has appeared explicitly in the Ricci tensor. However, the Ricci
tensor only describes how space-time is curved, but does not directly show gravitational waves.
Therefore, the Transverse-Traceless Projection is needed to extract the source term.

For the projection matrix P:

Using Mathematica for matrix and symbol operations, the source term is obtained:

It can be found that the potential function appears again in the source term, which shows that
scalar perturbations can induce gravitational waves at the second order, and it is perpendicular to the
propagation direction - only the x-y plane term can be left.

3. Conclusion

This paper systematically discusses the theoretical framework and calculation method of
gravitational waves induced by second-order scalar perturbations. By selecting the FLRW metric
under the Newtonian gauge, the second-order Christoffel symbol and Ricci tensor are derived, and
the original source term is constructed through these. In order to extract the physical content directly
related to gravitational waves, the TT projection is further applied to obtain the effective source term
   of the pure tensor mode. This shows that even if the initial perturbation of the universe only
contains a scalar part, the nonlinear gravitational effect can still produce tensor perturbations in the
second order, thereby forming gravitational waves.

This secondary gravitational wave induced by scalar perturbations provides important theoretical
support for our understanding of the structure formation and evolution process of the early universe,
and is expected to reveal more evolutionary information of the early universe.
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Appendix

a = a[t];

phi = phi[x, y, z, t];

psi = psi[x, y, z, t];

coords = \{x, y, z\};

delta = KroneckerDelta;

gradPsi2 = Grad[psi\^2, coords];

laplacianPsi2 = Div[Grad[psi\^2, coords], coords];

gradPsi = Grad[psi, coords];

dotGradPsi = gradPsi . gradPsi;

timeDerivativeTerm =

2 delta[i, j] D[a D[a, t] psi\^2 + a\^2 psi D[psi, t] -

phi (2 a D[a, t] psi + a\^2 D[psi, t]), t];

spaceSecondDerivativeTerm = D[psi\^2, \{coords[[i]], 1\}, \{coords[[j]], 1\}];

gradientSquareTerm = 4 D[psi, coords[[i]]] D[psi, coords[[j]]];
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deltaRij = timeDerivativeTerm + spaceSecondDerivativeTerm +

delta[i, j] laplacianPsi2 + gradientSquareTerm -

4 delta[i, j] dotGradPsi;

deltaRijSimplified = Simplify[Expand[deltaRij]]

deltaRijSimplified

a = a[t];

phi = phi[x, y, z, t];

psi = psi[x, y, z, t];

coords = \{x, y, z\};

(*Kronecker Delta*)

delta[i\_, j\_] := KroneckerDelta[i, j];

gradPsi = Grad[psi, coords];

gradPsi2 = Grad[psi\^2, coords];

laplacianPsi2 = Div[Grad[psi\^2, coords], coords];

timeDerivativeTerm =

2 delta[i, j] D[

a D[a, t] psi\^2 + a\^2 psi D[psi, t] -

phi (2 a D[a, t] psi + a\^2 D[psi, t]), t];

spaceSecondDerivativeTerm =

D[psi\^2, \{coords[[i]], 1\}, \{coords[[j]], 1\}];

gradientSquareTerm = 4 D[psi, coords[[i]]] D[psi, coords[[j]]];

(*gradient squared total*)

gradPsiSquare = gradPsi . gradPsi;

deltaRij =

timeDerivativeTerm + spaceSecondDerivativeTerm +

delta[i, j] laplacianPsi2 + gradientSquareTerm -
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4 delta[i, j] gradPsiSquare;

P[vec\_] := IdentityMatrix[3] - Outer[Times, vec, vec]/(vec . vec);

propagationDirection = \{0, 0, 1\};

Pij = P[propagationDirection];

Sij = Simplify[Pij . deltaRij . Transpose[Pij]];

SijExpanded = Expand[Sij];

SijExpanded

P = \{{1, 0, 0\}, \{0, 1, 0\}, \{0, 0, 0\}};

Rij = gradientSquareTerm + spaceSecondDerivativeTerm +

timeDerivativeTerm + (laplacianPsi2 -

4 gradPsi . gradPsi) KroneckerDelta[i, j];

Sij = Simplify[P . Rij . Transpose[P]]

MatrixForm[Sij]


