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Abstract. The rapid development and expansion of High-Performance Computing (HPC)
systems present signif- icant environmental challenges, primarily due to substantial energy
consumption and associated carbon emissions, often from non-renewable sources. This
paper provides a comprehensive analysis of the en- vironmental footprint of HPC. It models
global energy consumption, considering both full capacity and average utilization rates
(estimated at 12-18%). A model is developed to quantify total carbon emis- sions,
accounting for diverse energy sources, regional energy mixes, and conversion efficiencies.
The analysis explores future trends by considering projected HPC growth, increasing energy
demand from other sectors, and potential shifts in energy sources, forecasting impacts up to
2030 using time series analysis. The study further investigates the potential for mitigation by
modeling the relationship be- tween increased renewable energy adoption and carbon
emission reductions, including a scenario for 100% renewables. Additionally, the model is
expanded to include water usage, another critical environmental factor, analyzing its
relationship with energy consumption. Based on these models, actionable technical and
policy recommendations are proposed to enhance energy efficiency and promote
sustainability in the HPC sector, emphasizing the need to integrate these concerns into future
development and climate change mitigation strategies.
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1. Introduction

In recent years, the expansion of high-powered computing (HPC) capabilities has transformed
numerous sectors, including artificial intelligence (AI), data science, and cryptocurrency mining.
These areas rely heavily on massive data processing and computational power, driving demand for
high-performance hardware and extensive data center infrastructures. However, this rapid
advancement is not without environmental cost [1, 2].

The primary issue with HPC is energy consumption, as these systems rely on large-scale data
centers that require vast amounts of electricity, often sourced from non-renewable energy. This
results in significant carbon emissions. To fully understand HPC’s environmental footprint, it is
crucial to estimate annual energy use, considering both full and average utilization rates. Developing
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a model that quantifies carbon emissions based on energy consumption, while accounting for energy
sources and regional energy mixes, can offer valuable insights into current and future impacts,
especially given the expected growth in demand by 2030 [3, 4].

Beyond energy use, the manufacturing and disposal of HPC hardware also contribute to
environmental harm, generating significant electronic waste (e-waste) and depleting natural
resources due to rare earth extraction. In addition, the large physical footprint of data centers, along
with concerns about air quality and noise pollution, can negatively affect nearby communities and
ecosystems [1]. As HPC continues to expand, addressing these complex challenges is essential, and
strategies must be developed to balance technological progress with environmental sustainability.

This paper aims to：
Describe the scope of current global energy consumption associated with HPC, considering full

capacity and average utilization.
Develop a model to assess the environmental impact, focusing on total carbon emissions based on

energy sources, efficiency, and regional mixes.
Apply the model to analyze future scenarios (up to 2030) considering HPC growth, energy

demand changes, and shifts in energy sources.
Expand the model to assess the impact of increased renewable energy adoption and to incorporate

water usage as another key environmental factor.
Provide actionable recommendations for reducing the environmental impact of HPC through

technical and policy solutions.

2. Methodology and models

This section outlines the models developed to estimate energy consumption, carbon emissions,
future trends, and the impact of mitigation strategies for HPC systems.

2.1. Estimating global HPC energy consumption

To estimate the total global power consumption of HPC, energy consumption data from various data
center types (traditional, cloud non-hyperscale, hyperscale) were collected for the years 2015-2021
[4]. The annual total energy consumption is assumed to be the sum of these types, as shown in Table
1.

Table 1: Total energy consumption of data centers worldwide, under real life utilization rate
conditions

Year Total Energy Consumption Worldwide under utilization rate (terawatt hours)

2015 190.7
2016 195.26
2017 195.03
2018 197.69
2019 191.84
2020 190.13
2021 190.81

Data centers typically do not operate at full capacity. Based on industry reports, the average
server utilization rate is estimated to be between 12-18% [2]. For simplification, a median utilization
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rate (R) of 15% is assumed. The theoretical energy consumption under full capacity (Efullcapacity) is
calculated from the energy consumption under average utilization (Eutilizationrate) using equation (1):

Applying this calculation yields the estimated energy consumption under full capacity conditions
shown in Table 2, indicating relative stability over this period.

2.2. Modeling carbon emissions from HPC energy consumption

A model was developed to assess the environmental impact, specifically total carbon emissions,
resulting from HPC energy consumption. This requires considering the energy mix and the carbon
intensity of different energy sources.

Table 2: The total energy consumption of data centers worldwide, under full capacity conditions

Year Total Energy Consumption Worldwide under full capacity (terawatt hours)

2015 1271.33
2016 1301.73
2017 1300.2
2018 1317.93
2019 1278.93
2020 1267.53
2021 1272.07

baseline scenarios (e.g., by IPCC). While future changes may alter trends, this provides a baseline
impact assessment. Data splitting into training/validation sets is used to mitigate overfitting.

Variables: Key variables include Carbon Intensity (direct, CIdirect; LCA, CILCA), Low Carbon
Percent- age (LCP), and Renewable Percentage (RP) [3], detailed in Table 3.

Table 3: Variable definitions for carbon emissions

Symbol Definition Unit

CIdirect Carbon Intensity (direct) gCO2eq/kWh

CILCA Carbon Intensity (LCA) gCO2eq/kWh

LCP Low Carbon Percentage Percentage (%)
RP Renewable Percentage Percentage (%)

The energy mix and corresponding carbon emissions per kWh for major fossil fuels based on
U.S. data [5] inform the model. Using the shares (percenti) and carbon emission factors (carbon
emissioni) for each source i, the average carbon emission per unit of electricity consumption (carbon
emissionaverage) is calculated using a weighted average (Equation (2)):

Efullcapacity = Eutilizationrate

R (1)

carbon emissionaverage = Σ (percenti carbon emissioni) (2)
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Based on sample U.S. data (53% coal @ 2.30 lb/kWh, 45% natural gas @ 0.97 lb/kWh, 2%
petroleum @ 2.38 lb/kWh), the average carbon emission is calculated as 1.70 pounds per kWh. Total
carbon emissions are then derived by multiplying this average intensity by the total energy
consumption estimated in Section 2.1.

2.3. Forecasting future energy demand and environmental impact (to 2030)

To project future impacts, the model considers: (a) the growth of HPC facilities, (b) increasing
energy demand from other major sectors, and (c) potential changes in the energy source mix.

Growth of HPC: Data on the number of global data centers from 2010-2023 was analyzed using
polynomial regression (Degree 3) to model growth trends. The analysis indicated rapid growth
followed by a slowdown after 2019.

Increasing demand from other sectors: Energy consumption data for residential, commercial,
industrial, and transportation sectors were analyzed. Generalized linear models (polynomial
regression) were developed to study the energy demand trends for the major consuming sectors
(residential and commercial), showing increasing demand over time.

Actual energy sources and mixes: The complex mix of energy sources influences the carbon
emission per unit of energy. A Long Short-Term Memory (LSTM) model was developed using
historical data (1970- 2023) to analyze and forecast the temporal change of carbon emission
intensity (kg CO2eq/kWh). Model performance analysis (RMSE) and forecasts for the US and
World were generated. The models generally captured historical downward trends but showed some
divergence in recent years and future projections, suggesting limitations in extrapolating current
trends without accounting for potential systemic shifts.

These model components provide inputs for estimating the upper limit of total carbon emissions
from HPC by 2030 under various scenarios.

2.4. Modeling mitigation strategies: renewable energy and water usage

This section expands the analysis to quantify the impact of mitigation strategies, specifically
increasing renewable energy share and considering water consumption.

2.4.1. Impact of renewable energy on carbon emissions

Assumptions:
The relationship between renewable energy percentage (PRE) and carbon intensity (CIdirect,

CILCA) observed in 2023 data [3,6] is causally interpretable and can be extrapolated.
A 100% renewable scenario can be simulated via extrapolation, with qualitative consideration of

grid/s- torage challenges.
The PRE-Carbon Intensity relationship remains relatively stable in the short term.
Justification: Daily variations in the dataset allow for causal inference analysis. Exponential

decay models can account for diminishing returns as PRE approaches 100%. Sensitivity analysis and
BAU comparisons address uncertainties.

Variables: In addition to variables in Table 3, Total Energy Production (Etotal) and Reduced
Emissions (Ereduced) are used [3], defined in Table 4.
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Table 4: Variable definition (subset for renewable impact)

Symbol Definition Unit

CIdirect Carbon Intensity (direct) gCO2eq/kWh

Prenewable Proportion of renewable energy in total energy production Percentage (%)

Etotal Total energy generated in the U.S. on day kWh

Ereduced Reduction in carbon emissions from increasing renewables kg CO2eq/day

Model Development: Baseline daily emissions (Ebaseline) are calculated as:

Emissions under increased renewable share (Prenewable) are modeled assuming negligible direct
carbon intensity from renewables:

To simulate a gradual transition and diminishing returns for 100% renewables:

where α reflects the efficiency of renewable integration.
A linear regression model validates the relationship using 2023 U.S. daily data:

where Plow is the low-carbon energy percentage and ϵt is the error term.

2.4.2. Incorporating water usage

Assumptions:
Statistical trends between energy consumption and water withdrawals (2016-2023 data [7, 8])

continue (BAU).
Water withdrawals (W) are directly proportional to energy consumption (E) via an average

intensity factor (α).
Baseline assumes equal water intensity across sources; adjustments made for renewables.
HPC energy (EHP C) and water use (WHP C) scale proportionally to their share of total energy.
Justification: Simplifies projections, consistent with IPCC practices and empirical evidence of

linear energy- water links. Allows focus on HPC impact.
Variables: See Table 5.

Ebaseline (t) = CIdirect (t) ⋅ Etotal (t) (3)

Ereduced (t) = (1 − Prenevable (t)) ⋅ CIdivect (t) ⋅ Etotal (t) (4)

Ereduced (t) = Ebaseline (t) ⋅  e−α⋅Prenewable(t) (5)

Eactual (t) = β0 + β1 ⋅ CIdirect (t) + β2 ⋅ CILCA (t) + β4 ⋅ Plow (t) + ϵt (6)
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Table 5: Variable definition (water usage)

Symbol Definition Unit

E Total energy consumption Gigawatt-hours (GWh)
W Total water withdrawals Million gallons (Mgal)
α Water withdrawal intensity per unit of energy Mgal/GWh
αi Water withdrawal intensity of source i Mgal/GWh

EHPC HPC system energy consumption Gigawatt-hours (GWh)
WHPC HPC system water withdrawals Million gallons (Mgal)

Model Development: Baseline relationship between total energy (E) and water (W):

where α is estimated using regression on historical data (2016-2023), and ϵ is the residual error.
HPC-specific water demand:

Impact of renewables on water intensity: The overall intensity factor α changes based on the
proportion (Pi) and water intensity (αi) of each energy source i:

This αnew is then used in equation (8) to calculate WHP C under different renewable penetration
scenarios (e.g., baseline, 50% renewable, 100% renewable).

3. Results and interpretation

3.1. Renewable energy impact on carbon emissions

Analysis of 2023 U.S. daily data[3] established a strong linear relationship between the renewable
energy percentage and carbon intensity, with parameters shown in Table 6.

The linear regression equation (keeping two decimals) is:

where y is carbon intensity and x is the renewable energy percentage. This negative slope
indicates that as the percentage of renewable energy increases, carbon emissions decline linearly.
Simulations using this model quantify the potential reduction in carbon emissions as renewable
energy penetration increases.

W = α ⋅ E + ϵ (7)

WHPC = α ⋅ EHPC (8)

αnew = ΣPi ⋅ αi (9)

y = −6.93x + 489.73 (10)
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Table 6: Regression model parameters (renewable % vs carbon intensity)

Parameter Value

Slope -6.927
Intercept 489.727

R-squared 0.894

3.2. Energy consumption and water usage

Analysis of Google data center annual water usage (Mgal) and energy consumption (GWh) from
2016 to 2023 [7, 8] revealed a strong linear correlation, with parameters detailed in Table 7.

Table 7: Regression model parameters (energy consumption vs water usage)

Parameter Value

Slope 0.30715634
Intercept 772.68644612

R-squared 0.9871740908384165

The relationship (keeping two decimals) is:

where y is water withdrawal (Mgal) and x is energy consumption (GWh). This positive linear
relationship indicates that as the energy consumption increases, the amount of water withdrawal also
increases linearly.

Interpretation:
Baseline: HPC systems contribute significantly to water withdrawals (WHP C,baseline) under the

current energy mix, calculated using equation (8) and the derived baseline α.
Renewable Impact: Increasing renewable energy (Prenew) generally decreases water withdrawal

inten- sity (α), reducing WHP C. However, the extent depends on the type of renewables used (e.g.,
solar/wind are low-water, hydropower can be high-water).

Challenges: Transitioning fully to renewables might reduce overall water demand, but heavy
reliance on sources like hydropower could offset gains compared to low-water renewables[9,10].

3.3. Strengths and weaknesses of the models

Strengths:
Data-driven: Utilizes real-world data from authoritative sources (EIA, IEA, Electricity Maps,

IBM, Google).
Statistically rigorous: Employs established techniques (regression, time series, causal inference

tools) providing a robust framework.
Actionable: Informs specific technical and policy recommendations.
Unified framework: Integrates carbon and water footprints for a holistic assessment.
Weaknesses:

y = 0.31x + 772.69 (11)
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Modeling complexity: Precise modeling of challenges like energy intermittency, storage, and
infrastruc- ture limitations is beyond the scope, potentially affecting long-term 100% renewable
scenario accuracy.

Data dependency: Accuracy relies on the availability and quality of historical data; gaps or errors
could undermine results.

Assumption limitations: Reliance on BAU assumptions and stable relationships might not capture
disruptive technological or policy changes.

4. Recommendations and conclusion

4.1. Actionable recommendations

Reducing the environmental impact of HPC requires a combination of technological innovation and
policy measures.

Technical Solutions:
Hardware Optimization: Promote energy-efficient processors, advanced liquid cooling systems,

and hardware designed for renewable/alternative energy integration.
Software Optimization: Implement dynamic power management, energy-aware scheduling

algorithms, and virtualization to improve resource utilization and reduce computational waste.
AI/ML Integration: Utilize AI/ML for predictive maintenance (reducing downtime/waste),

optimizing resource allocation, real-time energy monitoring, and streamlining workloads.
Policy Interventions:
Incentivize Renewables: Offer subsidies, tax benefits, or renewable energy credits for HPC

operations transitioning to clean energy.
Regulations: Implement carbon emission caps or standards for large data centers.
Green Finance: Develop green credit programs with favorable rates for financing sustainable

HPC initiatives.
Table 8 summarizes these recommendations.

Table 8: Actionable recommendations

Category Optimization/Management Technology/Strategy Policy Support

Hardware Energy-saving processors Liquid cooling systems Incentives for efficient hard-
ware adoption

Software Dynamic power management Energy-aware scheduling Standards for software en-
ergy efficiency

Energy Optimize resource usage Renewable/alternative en- Subsidies, credits for renew-
ergy integration able transition

AI/ML Predictive hardware failures Optimize resource usage Funding for AI in green com-
puting research

Cross-cutting Identify efficiency trends Streamline workloads Carbon emission caps, green
credit programs
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4.2. Impact of recommendation implementation

Implementing the recommendation to increase the share of renewable energy in the HPC energy mix
shows significant potential. Based on the model derived in Section 3.1 (specifically, the slope from
Table 6), for every 5% increase in the proportion of renewable energy utilized by HPC facilities,
carbon emissions can be reduced significantly (quantified by 5 × slope value, demonstrating the
principle, though precise units depend on underlying scale). This highlights a scalable and impactful
strategy.

4.3. Conclusion

High-Performance Computing is a critical enabler of scientific and technological progress, but its
substantial environmental footprint, driven primarily by energy consumption and associated carbon
emissions, neces- sitates urgent attention. This analysis has quantified the current energy use of HPC
systems under both average and full capacity, modeled the resulting carbon emissions based on
prevailing energy mixes, and projected future impacts considering growth trends and potential
energy transitions up to 2030.

The models demonstrate a clear link between HPC operations, energy consumption, carbon
emissions, and water usage. Importantly, they also quantify the significant potential for mitigating
these impacts through the adoption of renewable energy sources. A strong linear relationship exists
between increasing renewable energy penetration and decreasing carbon emissions. While
challenges remain, particularly concerning grid stability and energy storage for 100% renewable
scenarios, the path towards sustainability involves a concerted effort combining technological
advancements (hardware/software efficiency, AI-driven optimization) and supportive policy
measures (incentives, regulations).

Addressing the environmental impact of HPC is crucial not only for environmental stewardship
but also for the long-term viability of the technology itself. Integrating sustainability considerations
into HPC development and operation, supported by informed policy, is essential to align
technological progress with global climate change mitigation and sustainable development goals.
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