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In earthquake and other natural disaster rescue scenarios, rapid and accurate
detection of vital signs in trapped individuals is crucial. Traditional manual methods suffer
from low efficiency and poor environmental adaptability to harsh environments, seriously
impacting the timeliness and effectiveness of rescue operations. Although robot-based post-
disaster life detection technologies have made progress, limitations remain such as limited
detection distance, high sensitivity to environmental interference, incomplete acquisition of
physiological parameters, and high dependence on robot hardware. This study employs
bibliometric analysis and typical case studies to systematically examine these limitations.
Based on the findings, an innovative multi-sensor fusion scheme is proposed. The research
shows that this technology significantly enhances rescue robots’ ability to perceive and locate
vital signs, improves rescue efficiency, increases the survival probability of trapped people,
and ensures greater safety for rescuers. This study offers a new technical path for earthquake
rescue and holds both theoretical and practical value for advancing disaster rescue technology
system.

earthquake rescue, rescue robot, vital signs detection, multi-sensor fusion
technology, technology optimization

Earthquakes are among the most destructing natural disaster, often resulting in complex and
dangerous rescue environment. The collapse of buildings creates massive debris, while aftershocks
and secondary disasters such as fire and electric leakage pose ongoing threats to resucers. In such
conditions, traditional manual methods for detecting vital signs gradually exposed many problems.
These methods are not only inefficient but also highly constrained by the environment, often failing to
detect trapped people in time and accurately, which compromises rescue effectiveness [1]. In
response, life detection technologies based on robitc systems have chieved certain results. Portable
devices designed by Beijing Institute of Technology can monitor the vital signs of disaster victims
through robots and transmit the data to rescue command centers. However, these system still face
critical challenges: limited detection range in large-scale disaster areas, susceptibility to
environmental interference (e.g., debris, poor weather), Inability to capture comprehensive
physiological indicators, and strong reliance on hardware—any malfunction can severely delay rescue
efforts.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

8



Proceedings of CONF-APMM 2025 Symposium: Controlling Robotic Manipulator Using PWM Signals with Microcontrollers
DOI: 10.54254/2753-8818/2025.AD24782

This study adopts a multi-dimensional research methodology. It systematically reviews domestic
and international literature to analyze theoretical frameworks and technical bottlenecks. In addition,
classic cases such as the Wenchuan earthquake are examined to assess the field performance of
current technologies. Based on this, this research explores the applicability and optimization strategy
of multi-sensor fusion technology in complex post-disaster environment to enhance the rescue robot's
ability to detect and locate vital signs and promote the development of the technical system in the
field of disaster rescue in an intelligent and efficient direction [2].

2. Current situation of rescue after earthquake and research status of vital signs detection
technology

Earthquake disaster relief field presents significant complexity and high-risk characteristics. Debris
accumulation from collapsed buildings not only impedes the movement of rescue workers but may
also pose a risk of secondary injury to trapped people. The uncertainty of aftershock activity makes
the rescue site constantly under the threat of structural instability, which may cause new collapse
accidents at any time. At the same time, secondary disasters such as fire, flood and leakage further
aggravate the danger and uncontrollable nature of rescue environment. Severe damage to
infrastructure, such as communications and transportation, creates huge obstacles to the transportation
of relief supplies and information transmission, leading to difficulties in organizing and coordinating,
increasing the time cost and implementation difficulty of rescue response [3]. Facing this complex
environments, traditional earthquake rescue models have obvious limitations in vital signs detection.
Rescuers need to manually operate detection equipment in high-risk environments, an approach that
has significant efficiency bottlenecks. In large-scale debris search and rescue scenarios, manual
detection not only consumes a lot of time and human resources but also has a high risk of missed
detection. In addition, environmental factors can cause multiple interference to manual detection.
Noise interference, dust pollution and insufficient light in ruins easily lead to misjudgment or failure
of detection equipment, thus reducing the accuracy and reliability of detection results. When exposed
to hazardous working conditions for a long time, the strength and concentration of rescue personnel
will rapidly decline, making it difficult to maintain the high quality and continuity of detection work
[4].

In recent years, in addition to the portable life detection device developed by Beijing Institute of
Technology, there are some similar technologies and devices that have been developed. Some robots
are equipped with advanced sensors, such as thermal imagers, sound sensors, etc., which can improve
the efficiency and accuracy of vital signs detection to a certain extent [5]. These technologies and
equipment have played a certain role in the actual rescue, providing new means and ideas for rescue
work [6]. However, there are still obvious technical bottlenecks. First, the effective detection distance
of most equipment is limited, difficult to achieve wide-range and deep-level effective coverage at the
disaster site. Secondly, there are a lot of physical obstructions and electromagnetic interference in
complex environments, which will seriously weaken the transmission quality of signals and lead to
significant reduction of detection accuracy. Thirdly, most of the existing equipment can only obtain
the basic vital sign information of the trapped person, lacking the accurate monitoring ability of key
physiological parameters such as heart rate, blood pressure and respiratory rate [7].

3. Problems faced by vital signs detection technology of rescue robot after earthquake

In the rescue robot vital sign detection system, many kinds of sensors work together, but different
types of sensors may interfere with each other when they work. When radar sensors transmit and
receive electromagnetic signals, electromagnetic interference may occur to acoustic signal sensors,
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making errors in sound signals collected by acoustic signal sensors. Similarly, the work of infrared
imaging sensors may also be affected by the light or heat emitted by other sensors, resulting in
reduced infrared image quality and affecting the detection and positioning accuracy of trapped people
[8].

Current vital signs detection algorithms have technical defects in adapting to complex
environments. Noise and interference signals are ubiquitous in the post-earthquake ruins scene, which
seriously pollute the data collected by sensors and increase the complexity of data processing. When
dealing with such complex data, the feature extraction ability and information recognition efficiency
of traditional algorithms are difficult to meet the requirements of real-time and accuracy. Take
acoustic signal processing for example. When the background noise intensity is large, the algorithm
easily misjudges the signal source and mistakenly identifies the ambient noise as the trapped person's
life signal. In addition, the existing algorithms expose the bottleneck of computational efficiency in
the process of large data processing, and it is difficult to meet the real-time detection requirements in
emergency rescue scenarios. Algorithm optimization and technological innovation are urgently needed
[9].

Post-earthquake debris environment is characterized by high complexity and uncertainty. Irregular
piles of debris from collapsed buildings interweave with debris to create rugged terrain. This not only
poses a severe challenge to the maneuverability of the rescue robot, but also seriously interferes with
the effective detection of sensors. And due to the reflection and scattering phenomena caused by
complex medium, the detection accuracy of radar sensor will decrease significantly. Severe weather
conditions further aggravate the complexity of the detection environment and significantly improve
the technical threshold for environmental adaptability of rescue robots [10].

4. Multi-sensor fusion technology scheme and application
4.1. Principle of multisensory fusion technology

Multi-sensor fusion technology integrates heterogeneous sensors such as radar, infrared imaging and
acoustic signals to build a collaborative sensing system, giving full play to the performance
advantages of each sensor to achieve multi-dimensional and accurate detection of targets [11]. Based
on electromagnetic wave reflection principle, radar sensor uses Doppler effect and micro-motion
feature extraction technology to quickly detect target motion state under non-contact condition and
effectively identify long-distance life signs. Infrared imaging sensors capture infrared radiation signals
unique to human body based on the correspondence relationship between infrared radiation and
temperature of objects and have excellent target recognition ability in weak light or partial occlusion
environment. The acoustic signal sensor collects environmental acoustic signals, applies Fourier
transform, wavelet denoising and other signal processing algorithms, and combines filtering
technology to accurately capture the weak sounds emitted by trapped people, thus realizing effective
identification of vital signs.

4.2. Application of sensors in vital signs detection
4.2.1. Radar sensor

Radar sensors are mainly used to detect the movement state and distance information of targets in
vital signs detection. By analyzing the Doppler frequency shift and micromotion frequency shift data,
we can judge whether the target has life activity, and its approximate position and movement
direction. When the radar sensor detects a weak periodic micromotion frequency shift signal, it may
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be caused by the breathing or heartbeat of the trapped person, thus determining the presence of vital
signs [12]. The following is an example of radar detection based on Doppler effect, and its specific
calculation formula is introduced [13]:

(1) Doppler frequency shift calculation formula: When the human body produces micromotion due
to heartbeat and respiration, it will cause Doppler frequency shift f; between radar transmitted wave
and reflected wave. The formula is:

fu= 3 (M)

Where v is the radial velocity of the human body micromotion (i.e., the velocity component
toward or away from the radar), A is the wavelength of the electromagnetic wave emitted by the
radar, and f; is the frequency of the radar emitted wave [14]. For example, if the radar emission
frequency A= £ (c bit light speed, about 3 x 10° m/s), calculate A =0.03m, assuming that the radial

velocity of human micromotion v =0.0lm/s, then the Doppler frequency shift

fq = 200 % 10 x 10° ~ 6.67 x 10° Hz. The formula shows that the faster the human body micromotion

speed, the higher the radar emission frequency and the larger the Doppler frequency shift, the easier it
is to be detected.

(2) From Doppler frequency shift to micromotion displacement calculation: By integrating the
Doppler frequency shift signal, the displacement information of human body micromotion can be
obtained. If the Doppler shift fd varies with time as a function of fd(t) over a period T, the
relationship between x(t) and Doppler shift under human micromotion displacement is:

x(8) = 5 Jy Ma (D)de )

This is because Doppler shift is related to velocity, and the integral of velocity over time is
displacement. In practical applications, digital signal processing methods are usually used to
accumulate and approximate integral discrete Doppler frequency shift data.

(3) Heartbeat and respiratory frequency extraction: After obtaining the micro-motion displacement
signal of human body, spectrum analysis is the key technical means to extract heartbeat and
respiratory frequency, among which Fourier transform (FFT) is a commonly used algorithm. For a
micro-motion displacement signal x(n) containing N sampling points (n= 1, 2,..., N-1 is the number
of sampling points), a frequency domain sequence X(k), k= 0, 1,..., N-1 is obtained after FFT
transformation, and the frequency corresponding to the spectrum peak is the main frequency
component of the micro-motion signal. According to the physiological characteristics of the human
body, the heartbeat frequency is usually distributed in the range of 0.8 - 3Hz, and the respiratory
frequency is concentrated in the range of 0.1 - 0.5 Hz. Quantitative analysis of heart rate and
respiratory rate can be achieved by identifying peaks in the corresponding frequency intervals in the
spectrum. For example, if the spectral analysis results show a significant peak at 1.2 Hz, it can be
determined as a characteristic of heart rate frequency. A peak of 0.2 Hz may correspond to respiratory
frequency information.

Infrared imaging sensor based on the infrared radiation characteristics of objects, in complex
environments to demonstrate efficient human target recognition capabilities. It captures the
temperature gradient difference between the human body and the environment, converts infrared
radiation energy into visual images, and then accurately locates the spatial position of the trapped
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person and presents its contour characteristics [15]. The sensor's detection advantage is more
prominent in the ruins with little light, which can significantly improve the search and rescue
efficiency of trapped people and provide vital support for rescue operations.

According to the theory of blackbody radiation, any object above absolute zero (-273.15°C) emits
infrared radiation continuously. The human body, due to its normal body temperature, becomes a
stable source of infrared radiation. Infrared imaging sensor takes infrared detector as its core
component and realizes target detection by sensing infrared radiation intensity. In the weak light
environment, although the lack of visible light signals, but the infrared radiation characteristics of the
human body is still significant. Sensors can detect human targets by capturing this radiation. In
addition, infrared light has lower attenuation characteristics in smoke media than visible light, so it
can still maintain effective detection ability in smoke-filled disaster scenes.

According to Planck's law of radiation, there is a significant functional correlation between the
infrared radiation intensity of an object and its thermodynamic temperature. The formula is:

_ 2hc? 1
B(AT) = =3 L 3)

Where B (A, T) is the radiance of an object at wavelength A and temperature T, h is Planck's
constant ( 6.626 x 10**J.s ), c is the speed of light in vacuum ( 3 x 10®m/s ), and k is Boltzmann's
constant ( 1.38 x 1072*J/K ). It can be seen from the formula that under certain wavelength conditions,
the higher the temperature of the object, the larger the corresponding infrared radiation intensity
increases exponentially. Because the temperature of human body keeps relatively stable physiological
state, the infrared rays radiated by human body form unique intensity distribution characteristics in
middle and long spectral bands. Infrared imaging sensors accurately capture this characteristic
radiation intensity range and accurately realize the effective discrimination between human targets and
environmental background [16].

The acoustic signal sensor is based on the principle of environmental acoustic signal acquisition and
realizes the detection of vital signs. When the trapped person makes a sound such as shouting or
knocking, the sensor captures the corresponding sound signal and suppresses the interference of
environmental noise through signal processing technology to extract effective vital sign information.
By analyzing the frequency component, intensity distribution, duration and other characteristic
parameters of the acoustic signal, the physiological state of the trapped person can be evaluated, the
position of the trapped person can be determined, and the key basis for rescue decision can be
provided. The following will be elaborated from two aspects of theoretical mechanism and
mathematical model.

Sound signal collection: The sound signal sensor generally selects the microphone as the sound
collection element. Microphones work based on piezoelectric effect, capacitance change or
electromagnetic induction. As for the ordinary condenser microphone, it consists of a diaphragm and a
fixed electrode. When sound waves strike the diaphragm, the diaphragm vibrates, causing a change in
the distance between the diaphragm and the fixed electrode, resulting in a change in capacitance. This
change in capacitance is converted into an electrical signal, thereby achieving a conversion from an
acoustic signal to an electrical signal [17]. The propagation of sound can be described:

dZ
V=G 4
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Where p is the sound pressure, c is the speed of sound, V? is the Laplacian operator, and t is
time. Wave equations can describe the propagation characteristics of sound in space. Acoustic signal
sensors receive acoustic signals according to this principle, and the received sound pressure is related
to the intensity of the sound.

Drying method and related treatment [18]:

(1) Denoising Based on Fourier Transform: Fourier Transform (FT) is a mathematical tool for
converting time-domain signals into frequency-domain signals with the formula:

F(w) = [0 f(t)e ™dt (5)

Where F (w) is the frequency domain representation, f(t) is the time domain signal, and w is the
angular frequency. By Fourier transform, sound signals can be converted from time domain to
frequency domain. Environmental noise and vital signal-related sound signals (such as breathing
sound, heartbeat sound) have different distributions in the frequency domain. Vital sign sound signal
frequency is usually concentrated in a certain range, such as breathing sound frequency is about 0.1 -
0.5Hz, heartbeat sound frequency is about 1 - 3Hz. By analyzing the frequency domain features, the
frequency components where the noise is located can be removed, and then the signal is converted
back to the time domain by inverse Fourier transform ( f(t) = - [* F(w)e™dw ) to achieve noise

removal.
(2) Wavelet denoising: Wavelet transform is another common denoising method, which can analyze
signals at different resolutions. The wavelet transform formula is:

Wi(a,b) = <= [ £ (O (t)dt (6)

Where Wg(a,b) is the wavelet transform coefficient, a is the scale parameter, b is the translation
parameter, and y,, 1is the wavelet basis function. The principle of wavelet de-noising is to
decompose sound signal into wavelet coefficients of different scales and positions by wavelet
transform. Noise usually shows specific characteristics on some wavelet coefficients. Through
threshold processing of wavelet coefficients, the coefficients related to noise are removed or
suppressed, and then inverse wavelet transform is carried out to reconstruct the signal, so as to achieve
the purpose of denoising.

Filter assisted vital signs judgment: Commonly used filtering methods include low-pass filtering,
band-pass filtering, etc. Low-pass filters can pass low-frequency signals and suppress high-frequency
signals, and their transfer functions can generally be expressed as:

H() = e (7)

Where s is the complex frequency and . is the cutoff frequency. For vital signs detection, low-
pass filters can be designed to remove high-frequency noise due to the low frequency of breathing
sounds and heartbeat sounds [19]. Band-pass filter allows signals within a specific frequency range to
pass through. For vital sign detection, band-pass filter with center frequency in respiratory sound or
heartbeat sound frequency range can be designed, such as designing a band-pass filter with center
frequency in 0.2-2Hz to highlight respiratory sound and heartbeat sound signals and filter out
interference signals with other frequencies to assist vital sign judgment [20].
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4.3. Flow chart of multi-sensor fusion technology

Multi-sensor fusion technology system consists of five core links: data acquisition, preprocessing,
algorithm fusion, decision analysis and result visualization. As shown in Figure 1, heterogeneous
sensors such as radar, infrared imaging, and acoustic signals (such as blue for radar data, red for
infrared data, and green for acoustic data) complete data collection in corresponding modes
respectively. The obtained data is immediately transmitted to the preprocessing module. Through
noise elimination and filtering, noise interference is eliminated, and data quality and reliability are
improved. The preprocessed data enters the processing stage of fusion algorithm. Through Kalman
filter, Bayesian inference or deep learning fusion algorithm, multi-source heterogeneous data are fused
at feature level or decision level to obtain more accurate and comprehensive vital signs information.
The fused data is input to the decision and judgment module. According to the preset rules and
models, the existence of vital signs and the spatial position of trapped people are discriminated, and
the results are output to the visual interface to provide intuitive decision-making basis for rescuers.

Data processing and
processor module

Infrared Imagery

Pt

Integrate into data

Acoustic Signal

—Decision-making module—

Data processing calculation

Figure 1: Flow chart of multi-sensor fusion technology
4.4. Analysis of fusion algorithm

In multi-sensor fusion technology, fusion algorithm module is the core part to realize efficient fusion
of different sensor data. Common algorithms include Kalman filter, Bayesian fusion and fusion
algorithm based on deep learning, which realize data fusion based on different principles and
formulas.

4.4.1. Kalman filter algorithm

Kalman filter is a common recursive filtering algorithm, suitable for data layer fusion, which
continuously optimizes the estimation of system state through two steps of prediction and update [21].
Assume that the equation of state for the system is:

Xy = AxXk_1 + Bk Uk + Wy (®)

The observation equation is:

14
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7 = Hy Xy + Vi )

Where X is the system state vector at time k, A, is the state transition matrix, By is the control
input matrix, Uy is the control vector, Wy is the process noise, obeying the Gaussian distribution with
mean 0 and covariance Qi ; Zi is the observation vector at time k, H, is the observation matrix, Vi
is the observation noise, obeying the Gaussian distribution with mean 0 and covariance Ry .

Predicting the state at the current moment: according to the state estimation value at the previous
moment, wherein the formula is:

K1 = Ak + Xy g + BiUk (10)
Covariance of predicted state:
Pt = APrope1Ag + Qi (11)

Where }A(k‘k,l is the predicted value of the state at time k based on the information at time k-1, and
Pik-1 1s the covariance matrix of the predicted state.

Updating step: correcting the predicted state by using the observed value at the current time to
obtain a more accurate state estimation value. Kalman gain

Ky = Pig 1 HE (HiPyy 1 + HE +Ry) (12)
The updated state estimate is
}Ek|k = ik\kfl + Ky (Zk - Hkik\k—l)
The updated covariance is
P = (I — KiHi) Pyt

Where Xk|k is the best estimate of the state at time k after fusing the observed data, Py is the

covariance matrix of the updated state estimate, and I 1is the identity matrix. In the multi-sensor
fusion scenario, the measurement values of different sensors are substituted into the above formula as
observation values, and the optimal state estimation after fusion can be obtained through continuous
iterative calculation, to improve the accuracy and stability of data.

4.4.2. Bayesian fusion algorithm

Bayesian fusion is based on Bayesian theorem and widely used in decision fusion. Bayes theorem is
formulated as:

P(BJA)P(A)

P(AB) = —55— (13)

In multi-sensor fusion, A represents different target states (such as the presence or absence of vital
signs, the location of trapped people, etc.), and B represents the observations of individual sensors. If
multiple sensors Si,Ss,...,S, observe independently, each sensor has a probability estimate Z; of the
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target state A based on its own number of observations P (AZ;) . According to Bayesian fusion rules,
the probability after fusion is:

i1 P(ZA)P(A)

P(A|Zy, 2y, ..., Zn) T AL P(ZAP(A)

Where P(Z;|A) is the probability that sensor i will observe Z; when target state is A, and P(A) is
the prior probability of target state A. Through this formula, the observation information of each

sensor is synthesized to obtain a more accurate probability estimate of the target state, to make a more
reliable decision [22].

4.4.3. Fusion algorithm based on deep learning

Deep learning models can automatically learn features from data and perform well in feature layer
fusion. Take CNN for example. It processes sensor data through convolutional layers, pooling layers,
and fully connected layers [23]. Assuming that the input multi-sensor data is X;,X,...,X, ,these
data are input to their respective CNN branch networks. For each branch network, the convolutional
layer convolutes the input data with a convolution kernel W, given by:

Vi = £( ey, W5 + b)) (14)

Where Y! is the output of the 1 of the ith branching network, f is the activation function (e.g.
ReLU function: f(x) = max(0,x) ), N; is the set of convolution kernels associated with the ith input,
Wi, is the convolution kernel associated with the jth input of layer 1 of the ith branching network,

and bi is the bias term. After extracting features from multi-convolution layer and pooling layer, the
features of each branch network are fused. The eigenvectors of each branch network can be connected
in series to form a new eigenvector. Then the fused feature vectors are input to the fully connected
layer for classification or regression, and the judgment of vital signs is realized. For example, when
determining whether there is a vital sign, the output of the fully connected layer is processed by the
SoftMax function to obtain the probability distribution of different states (presence of vital signs,
absence of vital signs) to decide.

5. Advantages and application prospect of multisensory fusion technology

Multi-sensor fusion technology significantly improves the efficiency of vital signs detection and
localization of rescue robots by integrating the performance advantages of heterogeneous sensors. The
technology combines the remote detection capability of radar sensor, the thermal radiation recognition
characteristic of infrared imaging sensor and the sound capture function of acoustic signal sensor, so
that the rescue robot can more efficiently and accurately complete the vital sign detection and spatial
positioning tasks of trapped people in complex earthquake ruins environment.

In the practical application of earthquake rescue, multi-sensor fusion technology shows remarkable
application value and practical significance. From the point of view of improving rescue efficiency,
this technology can quickly locate trapped people and gain prime time for rescue operations, thus
effectively improving the survival probability of trapped people. At the level of personnel safety
guarantee, the use of multi-sensor system carried by rescue robot for vital sign detection can
significantly reduce the exposure risk of rescue personnel in high-risk environment and form reliable
safety protection barrier. In addition, multi-sensor fusion technology can provide multi-modal vital
sign information to help rescuers comprehensively assess the physiological state of trapped
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individuals, to formulate more scientific and accurate rescue plans and improve the overall success
rate and implementation quality of rescue operations.

In addition, multi-sensor fusion technology shows great potential and application space in the field
of earthquake rescue. With the continuous iteration and innovation of technology, the detection
performance of sensors can be improved by optimizing design in the future, while reducing the size
and power consumption of devices. This will enable rescue robots to integrate more types of sensors
to achieve multi-dimensional, full-coverage vital sign detection. At the algorithm level, through the
fusion of artificial intelligence, big data analysis and other cutting-edge technologies, the fusion
algorithm is deeply optimized, which is expected to significantly improve the accuracy and real-time
performance of detection results [24]. In addition, the technology has excellent scene adaptability and
portability, which can be extended to various disaster rescue scenarios such as fire, flood and debris
flow, providing more efficient and reliable technical solutions for disaster rescue, thus promoting the
innovative development of the entire disaster rescue technology system.

This study focuses on the vital sign’s detection technology of rescue robot after earthquake disaster,
aiming to improve its detection accuracy and efficiency in complex environment. By analyzing the
shortcomings of traditional rescue methods and existing technologies, such as sensor cooperative
interference, algorithm robustness, poor adaptability to complex environment, system compatibility
and scalability defects, the necessity of adopting multi-sensor fusion technology is clarified, and its
technical principle, heterogeneous sensor cooperative mechanism, data fusion process and algorithm
realization path are described in detail. The research results show that this technology significantly
improves the accuracy and positioning efficiency of vital signs detection in complex environments by
integrating radar, infrared imaging, acoustic signals and other multi-source sensor data.

Although the phased achievements have been made, there is still room for improvement in real-
time performance of the system, mainly reflected in the high computational complexity of some
fusion algorithms. In the future, it can be verified by building a simulation experiment platform closer
to the real earthquake rescue environment and combining the algorithm structure reconstruction and
lightweight design to improve the system response speed and practicality.

Looking forward to the future, rescue robot vital signs detection technology will develop in the
direction of intelligence, precision and diversification. The introduction of artificial intelligence
algorithms is expected to optimize the feature extraction process, while the application of new sensors
such as biological or nano sensors will enhance detection sensitivity and parameter acquisition
capabilities. In addition, combined with cutting-edge technologies such as 5G and Internet of Things,
an efficient and coordinated intelligent collaborative rescue network can be built to comprehensively
improve disaster response capability.
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