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Abstract. Singular Value Decomposition (SVD) is a very important matrix factorization
technique in linear algebra which generalizes the eigenvalue decomposition to both non square
and non symmetric matrices. This report explains the theoretical foundation of SVD by
numerical examples and the comparison of SVD with eigenvalue decomposition on the basis of
versatility. Theoretical derivations, including proofs of SVD existence and uniqueness, are
presented with practical implementation using Python. Experiments include image
compression via truncated SVD and dimensional reduction on the Iris dataset. The results
indicate that only top k singular values are enough to retain the essential data features and
reduce storage requirements. For example, image compression with 50 singular values results
in a MSE of 0.05 and visually clear images, as well as 4D data can be reduced into 2D without
losing discriminative patterns. Findings confirm that SVD is computationally stable and
efficient, and provides robust solution for rank approximation, noise reduction, and feature
extraction. The study demonstrates that SVD's capability to break down data into intelligible
components make it to remain relevant in big data analytics, scientific computation and
artificial intelligence, with foreseeable future improvements also likely to increase its
applications.
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1. Introduction

Singular Value Decomposition (SVD) is a fundamental matrix factorisation technique in linear algebra,
generalizing eigenvalue decomposition to non-square and non-symmetric matrices. It decomposes any
real or complex matrix into one or more matrices whose size is less than the original one A of size m×n
into three matrices, providing deeper insights into structural properties such as rank, nullity, and
geometric transformations [1]. SVD has wide applications in different areas, such as signal processing,
data compression, machine learning, and computer vision. It is particularly valuable for solving least
squares problems, reducing dimensionality, and reducing noise on datasets. It also finds applications in
principal component analysis (PCA), search algorithms, and image processing. This paper discusses
the mathematical foundations of SVD, its geometric interpretation, existence, and uniqueness [2]. The
differences between SVD and eigenvalue decomposition and some practical use of it in python are
discussed. The real-world use, the applications of SVD, such as image compression and reductions of
data dimensionality are also discussed.

As for basic concepts:
1. Symmetric Matrix: A matrix A is called symmetric when it is equal to its transpose.
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Example: A =   

2. Eigenvalue Decomposition: A symmetric n×n matrix ‘A’ having ‘n’ real eigenvalues and an
orthonormal basis of eigenvectors can be expressed as:

Here, V is the matrix with columns as eigenvectors, and Λ is the diagonal matrix with eigenvalues
as diagonal elements. This is called eigenvalue decomposition [3].

3. Singular Value Decomposition: This is a generalisation of eigenvalue decomposition with the
requirement that the matrix is not necessarily symmetric or even square. A matrix 'A' can be
represented in the form of a matrix factorization of order m × n [4]. It is a linear algebra method of
decomposition of a real or complex matrix into three matrices

Before studying it in detail, an exploration of the components of Singular Value Decomposition
(SVD) is presented.

2. Geometric interpretation of SVD

The SVD is geometrically seen as the fact that the image of the unit sphere under any m x n matrix is a
hyperellipse [5]. The SVD is applicable to both real and complex matrices. However, in describing the
geometric interpretation, it is usually assumed that the matrix is real.

The term "hyperellipse" represents an unfamiliar way of describing m-dimensional ellipses within
their generalized format. A hyperellipse in    is formed by stretching the    unit sphere with factors
   (maybe zero) in the orthogonal directions   . The vectors    are unit-length
vectors since  . The vectors {   } function as the principal semiaxes of the hyperellipse,
delivering the lengths  . When A achieves rank r, then exactly r of the    will become non-
zero values, and in this context, when m has a minimum value of n, the maximum allowed number of
non-zero    will equal n [6]. The unit sphere refers to the Euclidean sphere standard in n-space while
using the 2-norm definition; thus, it is denoted as S. Through the transformation A, the image of S
contains the shape of a hyperellipse that is defined.

Figure 1: SVD of a 2×2 matrix [3]
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Let    be a set of    scalars with   
Then,    is the    th principal semiaxis with length    in   .
Now, if   , then exactly    of    are nonzero and exactly    of    's we

zero.So, if   , then    i.e., at most    of    's are nonzero.
For simplicity, let's assume    and   
Definition 1: The singular values are the lengths of the    principal semiaxes of the hyperellipsoid  
 (As shown in Figure 1)
The convention is:   
Definition 2: The    left singular vectors of    are the unit vectors    in    along the

principal semiaxes of   . So,    is the    the largest principal semiaxis of   .
Definition 3: The    right singular vectors of    are the unit vectors    which are the

preimages of the principal semiaxes of   , i.e.,
  

3. Reduced SVD
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and   , in this case   

when    ,. it’s invertible and nonsingular theoretically.

5. Application of SVD

5.1. Image compression

An image is depicted as a matrix where every element corresponds to pixel values.
SVD is applied to decompose the image matrix A into three matrices U, Σ, and    [7]. This makes

the largest individual singular values and associated vectors can represent the original image with
fewer data, making the file smaller but also resulting in some information loss(As shown in Figure 2).

Figure 2: Compressed Images for different values of k
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Figure 3: MSE vs number of singular values

Result: The Figure 3 shows the Mean Squared Error of image restorations against the number of
singular values (k) employed in Singular Value Decomposition (SVD). It points to a steep drop in MSE
as k is raised from a low value, reflecting considerable improvement in image quality (as shown in
Figure 4). The MSE stabilizes as k continues to rise, implying that there are diminishing gains in image
quality improvement. Hence, an optimal k value is 175, where image quality meets compression
efficiency.

5.2. Data dimensionality reduction

Use SVD to perform dimensionality reduction on a dataset for visualization or further analysis.
SVD compressed the 4D data down into 2D while keeping an important structure.
It works:
1. Exploring high-dimensional data: According to Chiu [8], humans do not have the 3D vision and

SVD enables to see that.
2. Use how to improve results for machine learning (SVM, k-NN), and reduce noise.

Figure 4: Dimensionality reduction using SVD (iris dataset)

6. Limitations and conclusion

SVD turns out to be a useful and an universal tool from linear algebra, and can provide a sound, robust
tool set to analyze and manipulate matrixes. As a result SVD will allow us to decompose a matrix into
orthogonal and diagonal components and to give a geom SD interpretation of linear transformations
and characterise linear transformations (rank, nullity, principal directions of variation). The application
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of eigenvalue decomposition is permitted only to square matrices, and their extensions, whereas SVD
can be applied to any matrices (square, nonsquare, symmetric or asymmetric) and is therefore very
convenient to use in modern computational mathematics. The Singular Value Decomposition (SVD)
exhibits remarkable practicality, finding applications in diverse domains such as image compression,
noise reduction, data analysis, and dimensionality reduction. Python-based implementations have
demonstrated that SVD can effectively reduce the dimensionality of high-dimensional data while
preserving a substantial amount of information, minimizing significant information loss. It is
concluded that SVD is central to numerical linear algebra and to data science, and provides an efficient
way to obtain solutions to difficult engineering, machine learning, and scientific computing problems.
This approach is likely to remain relevant in the world, where there’s big data processing, as it can
identify meaningful patterns of the data and is stable in computing. This demonstrates that the
advancements will make the use and efficacy of SVD applicable and efficient in new fields.

Singular Value Decomposition (SVD) is a powerful technique to solve matrix problems but is
computationally expensive (O(min(mn², m²n)) complexity), noisy and memory constraint for large
datasets[9][10]. In addition, it does not work well with nonlinear structures. Several aspects of future
research regarding scalable SVD using parallel and randomized methods and robust variants that are
resistant to noise remain for future investigate. Other nonlinear extraction approaches (integration with
deep learning) can be combined with adaptive rank selection techniques to determine the superior
dimensionality reduction. The applications of quantum SVD include large scale computations and
could be federated learning and biomedical signal processing. The appropriate of these limitations will
enhance SVD’s efficiency and will extend its reach in information technology and data science.
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