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Habits are fundamental to human behavior, enhancing efficiency through repeated
procedural responses. However, such automaticity can become maladaptive when behavioral
flexibility declines. Dysfunctional habit circuits have been linked to addiction, obsessive-
compulsive disorder (OCD), and repetitive behaviors in autism spectrum disorder (ASD).
These findings underscore the need for a mechanistic understanding of habit-related neural
dynamics and precise interventions. This paper presents a literature review of the neural
mechanisms underlying habitual behavior, emphasizing current and emerging applications
of brain—computer interfaces (BCls), particularly closed-loop BCIs (CLBCIs), in the
investigation and modulation of habitual control. The review identifies two core points:
traditional models tend to oversimplify cortico-striatal dynamics, while newer BCI
technologies may support more precise investigation. By discussing how BCIs address
longstanding methodological gaps, this review highlights their potential for real-time
modulation of habit-related circuits. While challenges remain in signal quality, regional
integration, and biocompatibility, BCIs hold clear promise for advancing both neuroscience
and clinical intervention.

Habitual Behavior, Neural Mechanisms, Brain—-Computer Interfaces (BCIs),
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Habits are automatic, inflexible, and unconscious responses formed through repeated practice [1-4].
Automation conserves cognitive resources, reduces deliberation, and enhances task efficiency.
However, their inflexibility can lead to maladaptive outcomes, potentially evolving into compulsive
or addictive behaviors under extreme reinforcement [2,3]. The rigidity of habitual behaviors is
commonly observed in conditions such as addiction and obsessive-compulsive disorder (OCD), and
behavioral inflexibility reminiscent of habit dysregulation has also been observed in autism
spectrum disorders (ASD). Though not confirmed causally, habit-circuit dysfunctions are strongly
implicated [2, 4]. Elucidating and modulating the neural mechanisms of habits is essential for
treating behavioral inflexibility in clinical conditions and promoting adaptive behavior in healthy
populations.

Despite progress, habit research struggles with conceptual clarity and methodological precision in
capturing neural dynamics. Current mainstream methodologies predominantly regard neural
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activities as final outputs, employing event-based labeling as the standard analytical unit [5]. This
paradigm neglects behavioral continuity and feedback loops, processes central to the formation and
persistence of habits [2,4-6]. Furthermore, although the brain regions involved in habit formation
have been repeatedly identified and validated [1,4,6,7], critical questions remain unresolved. The
exact neuronal populations participating in microcircuits, the topological organization underlying
habit storage, such as spatial patterns within regions or connectivity across circuits, and the precise
mechanisms of inter-regional cooperation among different brain structures remain largely elusive
[2].

Addressing these questions requires advances in theoretical models and experimental tools that
enable multi-regional interventions and recordings, with cellular spatial resolution and millisecond-
level temporal precision. Brain-computer interfaces (BCls), especially closed-loop BCIs (CLBCls),
offer promising solutions by meeting these methodological demands. Recent advances in subcortical
monitoring and single-cell precision have empowered BCI technology, particularly closed-loop
platforms, to demonstrate substantial potential for transforming habit research [8, 9].

This study presents a comprehensive literature synthesis of recent findings on the neural
mechanisms underlying habitual behavior and advances in BCI technologies. By evaluating the
capacity of BClIs, particularly CLBClIs, to address longstanding methodological limitations, the
review highlights their relevance to both basic neuroscience and clinical applications.

According to the dominant framework illustrated in Fig. 1, habitual behavior is thought to emerge
through a progressive shift from goal-directed action-outcome (A-O) processes mediated by the
dorsomedial striatum (DMS, i.e., anterior caudate in humans) to stimulus-response (S-R) processes
mediated by the dorsolateral striatum (DLS, i.e., posterior lateral putamen in humans). As this shift
progresses, repeated performance renders actions increasingly automatic and inflexible [4,10,11,12].
However, growing evidence challenges this strict dichotomy. Neural recordings reveal overlapping
task-related activity in both DMS and DLS [4], and dopamine dynamics do not shift uniformly from
DMS to DLS with habit formation. In habitual animals, DMS dopamine shows phase-specific
modulation, while DLS signals remain largely unchanged (Fig. 2). Optogenetic stimulation of DMS
dopamine accelerates habit acquisition [1]. Behavioral studies further demonstrate that goal-directed
and habitual processes may alternate within a single trial [4]. Thus, rather than acting as a fixed
“habit region,” the DLS appears to operate as a dynamically recruited node within an evolving
control network. While DMS inactivation induces habitual-like responses [13] and DLS inactivation
can restore goal-directed behavior [10], the strict division of labor between these regions risks
oversimplifying the distributed nature of habit control. Instead, DMS and DLS are better
conceptualized as interacting modules whose engagement may shift based on task phase or
motivational state [2,14].

Evidence from rodents and primates shows that habits involve a broader cortico-striatal-thalamic-
limbic network beyond DLS and DMS, as shown in Fig. 3. Outcome-independent behaviors rely on
DLS, the substantia nigra pars compacta (SNc), the infralimbic (IL) cortex, the central nucleus of the
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amygdala (CeA), and the perifascicular nucleus (PF) of the thalamus. Goal-directed behavior relies
on the prelimbic (PL) cortex, orbitofrontal cortex (OFC), and DMS [2, 6].

The PL-DMS pathway mediates A-O sensitivity; its lesion impairs goal-directed behavior and
blocks outcome devaluation effects [2,11]. IL activity increases with overtraining and promotes
habitual control via projections to DLS. IL modulation inhibits habit formation [15]. OFC-DMS
projections encode reward value. Plasticity at OFC-DMS synapses shifts behavior toward habitual
responding [2]. OFC modulates the balance between goal-directed and habitual systems [2,7].
Silencing OFC-DMS projections blocks stimulus-reward updating and induces behavioral rigidity
[14]. The PF-DMS pathway supports flexibility, and thalamostriatal input sustains adaptive action
selection [2]. Though not projecting directly to DLS, the basolateral (BLA) and central (CeA)
amygdala influence habits via multisynaptic circuits. BLA is active early and likely modulates DLS
via ventral-to-dorsal striatal pathways. CeA dominates later and encodes valence [2]. VTA and SNc
modulate habits through dopamine; reward amplifies their striatal influence [2]. Inhibiting the left
primary motor cortex (M1) via transcranial magnetic stimulation (TMS) enhances control,
suggesting that M1 suppresses habits via corticostriatal regulation [7]. DLS forms a self-reinforcing
loop: it inhibits substantia nigra pars reticulata (SNr), disinhibiting PF, which feeds back to DLS to
consolidate habits [6].

2.3. Beyond simple S—-R encoding

Although convenient, the S-R framework oversimplifies the neural basis of habitual behavior. Direct
evidence for S-R coding within the striatum is surprisingly sparse [4]. DLS neurons instead encode
motor “chunks”, action sequences bracketed by neural activity peaks at the start and end. This
stability across stimuli suggests that habits operate independently of fixed S-R combinations [2,4].
Habits are not entirely goal-free, as DLS neurons retain sensitivity to reward feedback. Some
neurons fire during actions, others after reward consumption or task completion. Overtraining, their
activity shifts from error-responsiveness to reward selectivity, reinforcing reward-driven behavior
[4,18]. This suggests that habitual circuits are not outcome-insensitive but integrate feedback with a
bias toward reward-consistent patterns. Thus, habitual circuits appear outcome-biased rather than
outcome-blind. They reinforce historically rewarded behaviors, creating a rigidity that mimics S-R
automation. This supports the view that goal-directed and habitual behaviors are not categorically
distinct but exist along a continuum of control intensity and circuit dominance [16].

Goal-directed (A-O) Habitual (5-R)
Stimulus + Outcome expectation Stimulus

Shift in control with repetition
DMS DLS
(Dorsomedial Striatum) (Dorsolateral Striatum)
(Sensitive to reward devaluation) (Insensitive to reward devaluation)
Action

Il Goal-directed (A-O) pathway [l Habitual (S-R) pathway

Figure 1: Conceptual model of striatal control shift from goal-directed to habitual behavior
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Figure 2: Dopamine dynamics in ventromedial striatum (VMS), DMS, and DLS during reward-
seeking behavior [1]
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Figure 3: Reorganization of cortico-basal ganglia-thalamic circuits accompanying habit formation

Pre-habit actions are gated by PL, OFC, and BLA projections to DMS, facilitating SNr
disinhibition of PF. Post-habit, IL. and CeA inputs dominate DLS control, with a strengthened
DLS—SNr—PF—DLS loop sustaining habitual execution. Arrow thickness reflects changes in
connection strength: M1 —DLS, BLA—DMS, PL—-DMS, and OFC—DMS projections weaken,
while IL—DLS and CeA—DLS pathways strengthen. The diagram does not differentiate between
direct and indirect projections.

3. Limitations of current research paradigms and tools
3.1. Shortcomings of linear models

Most habit studies adopt the S-R framework, assuming behavior results from linear causality, stimuli
processed by internal circuits directly elicit responses. This approach either manipulates stimuli or
neural activity to observe behavioral changes [2,4,14,15] or records neural changes during S-R
updates [2,4], helping to identify key habit-related regions and their activity patterns. However, this
linear model is inadequate as habit formation engages multiple interacting regions through parallel
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circuits [2] and complex positive feedback loops [6]. Reducing internal neural processing to a single
unit, without considering dynamic interactions, inevitably leads to fragmented conclusions.

Many updates retain a linear view, enriching only the variables between stimulus and response, or
adding cognitive processes [5]. Henry’s hierarchical control model [5] (Fig. 4) offers a deeper
alternative. It posits that behavior arises from minimizing deviation from goal states (attractors) via
recurrent negative feedback, rather than executing fixed outputs. This structure has been validated in
quadrupedal robotic systems (Fig. 5), supporting its biological plausibility [17]. Behavior, then,
reflects continuous internal adjustment rather than stimulus-driven execution. Thus, rather than fixed
outputs, habits likely reflect reorganization within hierarchical frameworks [4]. Therefore, models
must evolve beyond simple linear causality to encompass hierarchical, feedback-driven dynamics.

While key brain regions involved in habit formation are identified, the specific neuronal populations
underlying distinct habitual behaviors remain unclear. These regions contain diverse projection
neurons and interneurons [18]. Although they modulate striatal output across goal-directed and
habitual modes, their precise interactions remain unresolved (Fig. 6). SPN activation during
behavior is localized rather than global across the striatum [2]. The DLS—-SNr—PF-DLS circuit
further subdivides into parallel loops, suggesting modular encoding of distinct action sequences [6].
Whether such organizations vary across individuals or permit selective control of specific habits
remains unknown.

The mechanisms of interregional influence are poorly defined. Although IL’s role in habit
arbitration is validated by optogenetics [15], its lack of direct projections to DLS suggests
unidentified intermediaries [18]. Whether habit dominance suppresses cognitive control via reduced
prefrontal activity or enhanced DLS/IL drive is also unknown [4]. Integration of multi-regional
signals into coherent habitual behavior also remains poorly understood [2,18]. Although within-trial
dynamics between cognitive and habitual control have been observed [4], real-time tracking of
habitual dominance is limited.

Future studies must identify microcircuits at the single-neuron level, map interregional
information integration, and characterize closed-loop feedback dynamics. These objectives demand
tools with millisecond precision, cellular resolution, multi-region recording, real-time state tracking,
and closed-loop modulation.
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Figure 4: Illustration of a multi-level control hierarchy [5]

Each layer comprises a comparator that adjusts outputs to minimize deviations in controlled
variables. Error signals propagate upward, while corrective outputs are generated downward,
forming interlinked negative feedback loops. The system maintains behavioral stability through
parallel, continuous regulation without relying on discrete S—R mappings.
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Figure 5: Hierarchical control architecture implemented in a quadruped robot [17]

Each module continuously compares perceived and goal states, adjusting motor outputs to
minimize error. Lower-level controllers regulate motor variables, while higher layers coordinate
complex behaviors. Negative feedback through the environment allows real-time adaptation across
layers.
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Figure 6: Cell-type composition and interactions within DMS and DLS [18]

Both regions contain direct-pathway spiny projection neurons (dSPNs), indirect-pathway spiny
projection neurons (iSPNs), fast-spiking interneurons (FSIs), tyrosine hydroxylase-expressing
interneurons (THINs), and cholinergic interneurons (CINs). FSIs modulate SPN activity in both
regions but exert opposite functional effects. THINs and CINs are required for goal-directed control
in DMS, while their roles in DLS remain unclear. Several key interactions (dashed arrows) remain
unresolved.

4. The progress and potential of BCI
4.1. Overview of BCI and closed-loop advances

BClIs provide a direct communication pathway between the brain and external devices, enabling
decoding of brain states and modulation of neural activity [19]. BCIs have become powerful tools
for understanding brain functions [20] and enhancing them [21]. CLBCIs represent a key
advancement, allowing dynamic adjustment of outputs based on real-time feedback [22].

Despite their potential, the application of BCIs to habit research remains constrained by several
challenges. Current systems are expensive and time-consuming, particularly for closed-loop
operations [23]. Traditional methods often struggle to model the spatial topology of brain networks
[24], suffer from insufficient spatial resolution to target single neurons [8], and face difficulties in
recording from multiple deep brain regions such as the striatum [22]. Moreover, invasive BCIs often
encounter signal degradation over time due to gliosis and other tissue responses [22].

Recent advances have begun to address these limitations. Algorithm-hardware co-design now
enables precise, low-power closed-loop BCIs [22]. To overcome CNN/RNN limitations in EEG
analysis, forward-mechanism fused graph convolutional networks (F-FGCN) better capture spatial
relationships across channels [24]. Flexible high-density microelectrode arrays (HDMEAs) provide
single-neuron resolution [8], and MEMS-based devices allow chronic, multi-region implantation in
primates for real-time dopamine monitoring [25]. Tools like the Neuroscroll probe further support
high-resolution, long-term recordings across brain depths [9].
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BCl-related technologies have shown preliminary utility in habit research. In mice, optogenetic IL
manipulation enabled reversible, online modulation of habitual behavior [15]. In humans, inhibitory
continuous theta burst stimulation (¢TBS) over M1 suppressed habitual responses and enhanced
action precision [7]. EEG studies show that motor experts display distinct automatic response
patterns and superior frontal gyrus activity during suppression [26]. These findings highlight the
feasibility of monitoring and modulating habitual behavior, though systematic CLBCI application
remains scarce.

Recent advances in CLBCIs meet the core needs of habit research, offering single-cell resolution,
millisecond precision, multi-region recording, and feedback modulation [8,9,22,24,25]. Compared
to earlier tools like tetrodes or calcium imaging that were limited to single regions [2], high-
throughput platforms such as the Neuroscroll probe enable brain-wide mapping and tracking of
behaviorally relevant neurons [9]. Real-time feedback allows dynamic monitoring of circuit
reorganization and intervention during behavioral transitions [22,24].

Clinically, CLBClIs offer promising strategies for disorders involving maladaptive habits. Closed-
loop deep brain stimulation (DBS) has improved energy efficiency and responsiveness in OCD
treatment compared to open-loop systems [22,23,27]. In addition, EEG 0 activity predicts
neurofeedback efficacy [28], and BCI-based interventions have reduced craving and smoking [29].
The suppression of habitual responses via non-invasive neuromodulation [7] further illustrates their
potential for behavior-level modulation.

Nonetheless, challenges remain. Signal degradation due to gliosis [22], limited biocompatibility
[8], and difficulties in integrating distributed circuits [22] continue to constrain long-term
application. Overcoming these is key to realizing BCI potential in neuroscience and clinical care.

Habitual actions emerge from a distributed, dynamically re-weighted cortico-striato-thalamo-limbic
network. Rather than reflecting a simple DMS-DLS switch or fixed S-R mapping, habits involve
hierarchical control architectures, dopamine-gated microcircuits, and regionally coordinated action
“chunks”. Recent advances in high-density neural probes, graph-based decoding, and closed-loop
stimulation now enable real-time read-write access to key network nodes, offering new opportunities
for both mechanistic investigation and clinical intervention.

This review is limited by its narrative scope and by the scarcity of human intracranial data in
current CLBCI research. Future efforts should expand cross-species datasets and examine long-term
biocompatibility and ethical considerations.

Emerging directions include the development of minimally invasive CLBClIs capable of targeting
single-neuron ensembles across the habit network, the integration of hierarchical control theory with
neural decoders to predict state transitions, and personalized interventions to restore goal-directed
control in clinical and everyday contexts.
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