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In recent years, Massive Open Online Courses (MOOCs) face the challenge of
lacking immediate feedback. But it is difficult for teachers to judge how well the students
understand the class in the online environment. To solve this problem, this study adopted a
single-channel electroencephalogram (EEG) device to monitor students' learning status and
identified confusing signals through machine learning algorithms. First, this study validated
the effectiveness of EEG signals in distinguishing between confused and non-confused
states using the NeuroSky “MindSet”, and further explored the importance of different brain
oscillations in confusion with machine learning modeling. It was found that CatBoost
showed the best performance of predicting confusion. In addition, the three most important
features were Gamma2, Beta2 and Gammal. Future research can further improve the
detection accuracy by expanding the data scale, optimizing the algorithm, and combining
more behavioral indicators (such as eye movements, facial expressions, etc.), and finally
realize the development of personalized learning assistance systems to help teachers
dynamically adjust teaching strategies and optimize the effect of knowledge transfer.
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Confusion is an emotion associated with knowledge that usually arises in a learning environment.
According to Mandler's interruption theory, when new information conflicts with an individual's
existing knowledge, or the existing knowledge structure cannot absorb the new information,
cognitive imbalance will occur, which will lead to confusion [1]. It was further pointed out that
confusion is the emotional manifestation of cognitive imbalance [2]. Confusion is often triggered by
inconsistent or novel complex information, and if this incongruity cannot be resolved, confusion can
turn into frustration [3]. Persistent confusion can lead to reduced use of deep learning strategies and
planning strategies, lower student self-efficacy, and even lower academic performance and
disengagement from learning [4, 5]. However, a moderate amount of confusion can also promote
deep learning, especially if the student has a high level of cognitive ability and motivation [6]. The
resolution of the confusion, whether complete or partial, can improve learning outcomes [7, 8]. The
resolution of the confusion does not mean directly addressing the confusion itself, but rather
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addressing the cognitive imbalance that causes the confusion [9]. Learners are required to have
certain knowledge and skills, or to solve confusion through external scaffolding (such as
instructional support) [10, 11].

Electroencephalogram (EEG) signals are reflections of neural activity in the brain and can be
measured on the surface of the scalp [12]. Rhythmic fluctuations in brain waves occur within
specific frequency bands, and the level of activity in each band correlates with different states of the
brain, such as attention, mood, etc [5, 6]. Brain waves are generated by the electrical activity of
millions of neurons in the brain, which are connected to each other through synapses to form neural
networks [13]. When neurons are active, electrical currents are generated locally, forming brain
waves [14]. Brain waves can be used to analyze human emotions and cognitive states [15]. Different
brain wave bands, such as theta, alpha, beta, and gamma waves, are associated with different
cognitive tasks and emotional states. For example, activation of the prefrontal and parietal regions is
strongly associated with understanding, thinking, and rational discrimination [16]. EEG has been
widely used in cognitive science research to measure cognitive functions such as alertness, mental
fatigue, stress, attention, mental workload, and emotional state [17]. EEG is more acceptable than
functional magnetic resonance imaging (fMRI) in certain populations such as children and sensory-
sensitive individuals. In recent years, researchers have used EEG data to explore the neural
mechanisms of cognitive modeling, memory recall, and mental computation. For example, Cheng et
al. used EEG data to assess the cognitive state of construction workers, and Valentim et al.
investigated changes in EEG signals during arithmetic subtraction tasks [18, 19].

In the present study, brainwave activity of students while they watched a MOOC video recorded
with a single-channel EEG device, the NeuroSky MindSet, were analyzed, and machine learning
algorithms were used to distinguish whether the students were in a confused state. The experimental
results showed that EEG signals can be used to distinguish students' confused states. It was also
found that gamma and beta bands played an important role in the confusion, further supporting the
physiological basis for EEG signals to reflect confusion.

The data analyzed in the current study are retrieved from a public data source [20]. There are 12811
rows and 12 columns (namely Attention, Meditation, Raw, Delta, Theta, Alphal, Alpha2, Betal,
Beta2, Gammal, Gamma2, user-definedlabel) in the data set. There are 10 subjects. Each person
watched the same 10 videos. Each row represents the brain waves of subjects when they were
watching the videos.

Exploratory data analysis and machine learning modeling were carried out as shown in Figure 1.
Random Forest, XGBoost, and CatBoost models were used to model the confusion state (user-
definedlabel) using brain oscillations as features. Pandas, NumPy, and Scipy were used for data
processing and profiling. Seaborn and matplotlib were used for data visualization. Sklearn and
PyCaret were used to implement the models.
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Figure 1. Flow chart of data analysis model
2.3. Confusion matrix

When the actual situation is positive, if the prediction is positive correctly, the prediction is defined
as True Positive (TP), and if the prediction is negative, it is called False Positive (FP). When the
actual situation is negative, if the prediction is negative correctly, the prediction is defined as True
Negative (FN), and if the prediction is positive, it is called False Negative (TN) (Figure 2).

Predicted

Positive Negative

Positive True Positive
Actual

Negative True Negative

Figure 2. Confusion matrix

Various performance metrics of the classification model were also calculated.
Accuracy is defined as the ratio of correctly classified instances (true positive and true negative)
to the total number of instances in the confusion matrix.

Accuracy = 7pAE B X 100% )

Precision is the ratio of true positives to all samples (the sum of predicted positives in the
column) that are predicted to be positive.

Precision = %fm? x 100% @)

Recall is the ratio of true positives to the total number of all actual positives (the sum of the rows
of true positives).

Recall = 752y % 100% 3)

The F1 score is a harmonic average of accuracy and recall, and when the data categories are
uneven, the F1 score is more meaningful than the accuracy.

Fl=2 x Precision X Recall (4)

Precision + Recall
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2.4. Receiver operating characteristic ROC curve

The x axis of the ROC curve is False Positive Rate (FPR), the proportion that is actually negative
but incorrectly predicted to be positive, calculated as follows:

FPR = FP+TN )

Its y axis is True Positive Rate (TPR), the proportion that is actually positive and correctly
predicted to be positive, calculated by the formula:
_ TP
TPR= 1pipn (6)
By adjusting the classification threshold, TPR and FPR under different thresholds are calculated,
and these points are connected to form the ROC curve.
Area under Curve (AUC) represents the area under the ROC curve, and its value ranges from 0 to

1. When AUC = 0.5, it indicates that the classification ability of the model is equivalent to random
guessing. The closer the AUC value is to 1, the better the overall performance of the model.

3. Results

The number of different genders were 8 males and 2 females, and the number of different ethnicities
were 8 Han Chinese and 1 English and 1 Bengali.

The distribution of Attention strength scores had a mean and standard deviation of 41.31+23.15
and a range of [1.00, 100.00] (Figure 3A). The distribution of Meditation strength scores had a mean
and standard deviation of 47.18+22.66 and a range of [1.00, 100.00] (Figure 3B).
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Figure 3. (A) Histogram of Attention (min = 0; max = 100; median = 43). (B) Histogram of
Meditation (min = 0; max = 100; median = 51)

The distribution of Raw strength scores had a mean and standard deviation of 65.57+597.92 and a
range of [-2048, 2047] (Figure 4)
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Figure 4. Histogram of Raw (min = -2048; max = 2047; median = 35)

The distribution of Delta strength scores had a mean and standard deviation of mean + std =
605785.26+637623.56 and a range of [448, 3969663] (Figure 5A). The distribution of Theta strength
scores had a mean + std = 168052.60+244134.57 and a range of [17, 3007802] (Figure 5B). The
distribution of Alphal strength scores had a mean + std = 41384.35+72430.82 and a range of [2,
1369955] (Figure 5C). The distribution of Alpha2 strength scores had a mean + std =
33183.39+58314.10 and a range of [2, 1016913] (Figure 5D). The distribution of Betal strength
scores had a mean + std = 24318.37+£38379.68 and a range of [3, 1067778] (Figure 5E). The
distribution of Beta2 strength scores had a mean + std = 38144.33+79066.06 and a range of [2,
1645369] (Figure 5F). The distribution of Gammal strength scores had a mean + std =
29592.55+£79826.37 and a range of [1, 1972506] (Figure 5G). The distribution of Gamma2 strength
scores had a mean =+ std = 14415.97+36035.23 and a range of [2, 1348117] (Figure SH).
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Figure 5. Histogram of specific brain waves

It was found that subjects felt confused at 6567 moments, and subjects did not feel confused at
6244 moments. (Figure 6).
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Figure 6. Value counts of user-definedlabel ('1.0°: confused, n = 6567, '0.0’: not confused, n = 6244)

The correlation coefficients between numeric features were calculated , with Betal and Alpha2,
Gammal and Beta2, Gamma2 and Beta2, Gammal and Gamma?2 strongly correlated (Figure 7-8).
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Figure 7. Correlation matrix

The following features are grouped in pairs and are strongly and positively correlated with each
other. Log Betal and log Alpha2 (r = 0.63) (Figure 8A). Log Gammal and log Beta2 (r = 0.81)

(Figure 8B). Log Gamma2 and log Beta2 (r = 0.69) (Figure 8C). Log Gammal and Gamma?2 (r =
0.74) (Figure 8D).
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Figure 8. Scatter plot of logged features. (A) Log Betal against log Alpha2. (B) Log Gammal
against log Beta2. (C) Log Gamma?2 against log Beta2. (D) Log Gammal against log Gamma?2

The mean meditation scores of the confusing group are statistically and significantly different
from those of the not confusing group (Raw0: n = 6243, mean + std = 66.47+627.19, Rawl: n =
6567, mean + std = 64.72+568.74, stats = 0.17, p = 8.68x10™', paired t-test) (Figure 9).
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user-definedlabel

Figure 9. Bar plot of mean Raw values in confused and non-confused groups. Error bar = standard
error of mean; NS = not significant

The mean meditation scores of the confusing group are statistically and significantly different
from those of the not confusing group.

Delta: Delta 0: n = 6243, mean = std = 5.08x10°+5.95x10°, Delta_1: n = 6567, mean + std =
6.98x10°+£6.62x10°, statistics = -17.01, p = 3.77x10*(Figure 10A).

Theta: Theta 0: n = 6243, mean =+ std = 1.31x10°+£1.94x10°, Theta 1: n = 6567, mean =+ std =
2.03x10°+2.78x10°, statistics = -16.88, p = 2.80x10"* (Figure 10B).

Alphal: Alphal 0: n = 6243, mean =+ std = 3.23x10*£5.60x10%, Alphal 1: n = 6567, mean =+ std
=4.99x10"+£8.42x10% statistics = -13.88, p = 1.77x10™* (Figure 10C).

Alpha2: Alpha2 0: n = 6243, mean =+ std = 2.67x10"+4.32x10*, Alpha2 1: n = 6567, mean =+ std
=3.92x10"+£6.91x10% statistics = -12.21, p = 4.39x10>* (Figure 10D).

Betal: Betal 0: n = 6243, mean + std = 1.99x10£3.03x10*, Betal 1: n = 6567, mean * std =
2.84x10%+£4.43x10%, statistics = -12.70, p = 1.03x107° (Figure 10E).

Beta2: Beta2 0: n = 6243, mean + std = 3.65x10£8.10x10*, Beta2 1: n = 6567, mean * std =
3.96x10*7.71x10", statistics = -2.21, p = 2.69x10 (Figure 10F).

Gammal: Gammal 0: n = 6243, mean + std = 2.86x10*8.65x10%, Gammal 1: n = 6567, mean
+ std = 3.04x10*£7.28x10*, statistics = -1.28, p = 2.00x10"" (Figure 10G).

Gamma2: Gamma2 0: n = 6243, mean + std = 1.24x10*3.39x10*, Gamma2_1: n = 6567, mean
£ std = 1.62x10*£3.77x10*, statistics = -6.07, p = 1.34x10” (Figure 10H).
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Figure 10. Bar plot of mean brain wave feature values in confused and non-confused groups with
paired t-test. Error bar = standard error of mean. (A) Delta; ***, p <0.001. (B) Theta; ***, p <
0.001. (C) Alphal; *** p < 0.001. (D) Alpha2; *** p <0.001. (E)Betal; *** p <0.001. (F) Beta2;
*0.01<p<0.05. (G) Gammal; NS = not significant. (H) ; *** p <0.001

4. Machine learning modeling

Three machine learning models, namely Random Forest, CatBoost and XGBoost were used to
model the confusion state using brain oscillation features. It was found that the Random Forest
model showed the best performance in classification (AUC = 0.6741), followed by CatBoost (AUC
= 0.6726) and XGBoost (AUC = 0.6465) (Table 1). Considering all metrics including AUC,
accuracy, recall, precision and F1, CatBoost showed the best performance, followed by Random
Forest and XGBoost (Table 2).

Table 1. Model performance comparison

AUC Accuracy Recall Precision F1
Random Forest 0.6741 0.6198 0.6413 0.6263 0.6335
CatBoost 0.6726 0.6233 0.6550 0.6270 0.6406
XGBoost 0.6465 0.5985 0.6197 0.6061 0.6127

Table 2. Average rank of model performance

AUC Accuracy Recall Precision F1 Average Overall
Rank Rank Rank Rank Rank Rank Rank
CatBoost 2 1 1 1 1 1.2 1
Random 1 2 2 2 2 1.8 2
Forest
XGBoost 3 3 3 3 3 3 3

For the Random Forest model, the AUC-ROC is 0.6741 (Figure 11A). Number of TP, TN, FP,
and FN are 1261, 1146, 728, and 709, respectively (Figure 11B). The top three most important
features are Delta (0.1210), Theta (0.1184), and Beta2 (0.1162) (Figure 11C).
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Figure 11. The model performances of Random Forest classifier. (A) ROC curves, (B) Confusion
matrix, (C) Feature importance plot
For the Random Forest model, the AUC-ROC is 0.6726 (Figure 12A). Number of TP, TN, FP,
and FN are 1331, 1109, 765, and 639, respectively (Figure 12B). The top three most important
features are Gamma2 (0.1343), Beta2 (0.1274), and Gammal (0.1248) (Figure 12C).
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Figure 12. The model performances of CatBoost classifier. (A) ROC curves, (B) Confusion
matrix, (C) Feature importance plot

For the Random Forest model, the AUC-ROC is 0.6465 (Figure 13A). Number of TP, TN, FP,
and FN are 1224, 1087, 787, and 746, respectively (Figure 13B). The top three most important
features are Delta (0.1233), Theta (0.1188), and Beta2 (0.1185) (Figure 13C).
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Figure 13. The model performances of XGBoost classifier. (A) ROC curves, (B) Confusion
matrix, (C) Feature importance plot

Feature importance values and ranks of the three models were summarized as below (Table 3).
Table 3. The feature importance values of brain waves among three classifiers

Random Forest CatBoost XGBoost
Raw 0.1003 0.1118 0.1072
Alphal 0.1028 0.0799 0.0921
Alpha2 0.1081 0.1049 0.1040
Betal 0.1058 0.0956 0.1087
Beta2 0.1162 0.1274 0.1185
Delta 0.1210 0.1130 0.1233
Theta 0.1184 0.1082 0.1188
Gammal 0.1132 0.1249 0.1172
Gamma?2 0.1141 0.1344 0.1101

Finally, it was found that Beta2, Gamma2 and Delta are the overall top three most important
features (Table 4).
Table 4. The average feature importance values and their ranks of brain waves among classifiers

Average Importance Rank

Beta2 0.1207 1
Gamma?2 0.1195 2
Delta 0.1191 3
Gammal 0.1184 4
Theta 0.1151 5
Raw 0.1065 6
Alpha2 0.1056 7
Betal 0.1034 8
Alphal 0.0916 9
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In the study, we analyzed the relationship between different brain waves and the state of confusion
using machine learning models, including Random Forest, CatBoost and XGBoost. The
performance of the models was evaluated through confusion matrices and ROC curves (including
AUC values, TPR, FPR, etc.). It was found that most brain waves (such as Beta2, Gamma?2, etc.)
were significantly correlated with the judgment results. In the model comparison, CatBoost
performed the best, with its important features including Gamma?2 and Beta2, Delta, etc. Overall,
brain wave characteristics can effectively predict the state of confusion, and CatBoost is the best
prediction model.

Beta waves (especially beta 2 oscillations, 23-30 Hz) are strongly associated with higher-order
cognitive functions, including conscious thinking, logical reasoning, attention, and problem solving
[21]. Studies have shown that Beta2 oscillations specifically modulate hippocampal neuron activity
and are dependent on NMDA receptor delivery [22], that energy levels are positively correlated with
the number of new objects in the environment, and that drug blocking memory consolidation
enhances Beta2 activity [23]. In addition, beta2 oscillation in the basal forebrain has also been found
to be associated with associative learning in rats [24], suggesting that it may play a key role in
novelty detection and memory encoding as a "learning initiating signal" across brain regions.

In the current study, beta2 waves have the highest average importance of the three models, which
is obtained by the model's algorithm. However, its ability to distinguish whether the subject was
confused was not very good, and its P-value showed that it was statistically significant for
confusion, but not particularly significant compared to other brain waves. However, in deep learn-
based doubt detection (such as 1D CNN), Beta2 waves are often an important input feature to help
distinguish between "confused" and "non-confused" states, with classification accuracy up to 99%
[25]. This discrepancy may be caused by insufficient experimental data.

In the current study, the gamma2 wave (>20Hz) has the second highest importance, which is also
demonstrated by past research, and is primarily a key neural oscillation responsible for cognitive
function, learning, memory, information processing, and consciousness maintenance [25]. Studies
have shown that gamma waves are significantly reduced in patients with delirium (confusion) [26,
27], which is related to its cognitive dysfunction. Abnormalities were observed in the direction of
neural network connections in patients with consciousness disorders, particularly in brain regions
involved in attention, working memory, and executive function, although a statistically significant
difference in gamma was not found [28, 29]. These findings suggest that gamma wave activity is not
only a marker of cognitive function, but may also be a potential biological indicator of disorders of
consciousness, such as disorders of consciousness.

In this study, gamma2 waves showed significant differences in confusion states. This may be
because when subjects were confused, they had similar brain waves to patients with mental
disorders, which was also an aspect of distinguishing whether subjects could understand the video
content.
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Finally, past researchers have demonstrated that delta waves (1-3Hz) have been involved in sensory
rejuvenation, boosting the immune system, natural healing, and restorative/deep sleep [29].
However, at present, no studies have clearly pointed out that delta waves are related to confusion or
learning, but it is indeed a more important indicator in this study, and the difference in distinguishing
confusion is very significant. Therefore, it is speculated that this correlation does not indicate
causation between the two, but is the result of confusion about the content of the video and related
physiological reactions, such as the possibility that the subject felt drowsy when watching content
that was beyond comprehension.

As for the remaining waves, the Gammal wave reflects the rapid information transmission and
integration between different regions of the brain, and is often closely related to working memory
operations [29]. It may be suppressed when dealing with information that is likely to cause
confusion or contradiction. The Alpha wave is generally associated with deep relaxation and a calm
state. Among them, Alphal is usually regarded as a mechanism that inhibits sensory input, helping
people focus on internal information, while Alpha2 is more active than Alphal, representing a slight
arousal of attention and a transitional state of task preparation [30]. In this study, the model weight
of the Alphal wave was the lowest, which is consistent with its physiological function. The Theta
wave involves the enhancement of intuition, the stimulation of creativity, and the neural mechanisms
of learning and memory [30]. The Betal wave mainly represents brain activity during the task
initiation stage and is closely related to concentration and execution preparation [21].

Table 5. The corresponding frequencies and the related physiological status of different brain
waves

Frequency . .
(Hz) Related Physiological Status
Delta 0.5-4 Deep sleep, unconsciousness, brain repair [21, 31]
Theta 4-8 Relaxation, meditation, early sleep [30, 32]
Alphal 8-10 Basic relaxation and disengage the senses [30, 33]
Alpha2 10-13 Relax with a little preparation and pay attention to internal adjustment [30, 33]
Betal 13-23 Pay attention and be prepared for the task [20, 34]
Beta2 23-30 High alertness, stress, tension, anxiety, complex cognition [20, 22, 23]
Gilmma 3045 Perceptual integration, higher-order cognition [25, 27, 29]
Gamma 45-80 Consciousness integration, deep concentration, and memory activation [24, 25, 27,
2 29]

In this study, we analyzed experiments on 10 subjects and various oscillation data, including delta,
theta, alpha, beta and gamma oscillations. We analyzed the distribution of brain waves, and the
connection between the examiner's judgment on whether the subjects were confused and different
brain waves. We tested the performance of three models in predicting confusion state: CatBoost,
Random Forest and XGBoost. There is also a correlation in the intensity among different brain
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waves, with Betal and Alpha2, Gammal and Beta2, Gamma2 and Beta2, Gammal and Gamma?2
strongly correlated. Most brain waves (Delta, Theta, Alphal, Alpha2, Betal, Beta2, Gamma2) can
significantly correspond to the examiner's judgment of whether the subjects were confused or not,
while there is no significant difference in Gammal.

Among these three models, Catboost performed the best based on the AUC-ROC curve,
precision, recall and the F1 score, then the Random Forest and XGBoost in sequence. Among them,
the three most important features in model CatBoost were Gamma2, Beta2 and Gammal, namely
0.1343, 0.1274 and 0.1248. Among three models, taking the average of importance, the three most
important features were Beta2, Gamma2, and Delta, namely 0.1207, 0.1195 and 0.1191. By
analyzing the brainwave activities of students when they are confused, specific brainwave patterns
can be identified, which is helpful for the future development of personalized learning assistance
systems and real-time cognitive state monitoring tools.
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