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Abstract. In view of the importance of Weierstrass approximation theorem, this paper
presents a probabilistic approach to establishing the Weierstrass approximation theorem via
Bernstein polynomials, emphasizing the interplay between probability theory and
mathematical analysis. By interpreting Bernstein polynomials through the lens of Bernoulli
trials , the author associates the Bernstein polynomial function with the expectation  

 , where    follows a binomial distribution with parameter   . Leveraging the
law of large numbers, the author demonstrates the uniform convergence of the Bernstein
polynomial function to the original function on   . The key technical contributions
involve bounding the approximation error through variance analysis and employing
piecewise estimation to address non-uniform continuity . This approach not only circumvents
traditional analytical complexities but also highlights how probabilistic tools, such as
particularly moment calculations and distributional convergence, naturally unify discrete
approximations with continuous function spaces. The methodology simplifies computational
procedures while maintaining rigorous convergence guarantees, offering an instructive
example of cross-domain synergy between probability and classical analysis .
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1. Introduction

The synergy between probability theory and mathematical analysis has profoundly enriched both
fields, offering unified frameworks for tackling complex problems. A striking example lies in the
probabilistic interpretation of Bernstein polynomials, where binomial distributions and expectation
operators    translate function approximation into probabilistic convergence analysis .
By leveraging variance bounds    and the law of large numbers, discrete
probabilistic models converge uniformly to continuous functions, directly proving the Weierstrass
theorem . Such methods bypass traditional analytical complexities while highlighting how
probability theory—via moment calculations and distributional limits—provides intuitive tools for
approximating function spaces like   . Conversely, mathematical analysis underpins
foundational probability concepts, such as measure-theoretic integration and density functions,
ensuring rigorous continuity and convergence proofs . This cross-disciplinary interplay not only
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simplifies computational workflows but also deepens insights into stochastic processes and
deterministic analysis alike .

The probability theory has such a close relationship with mathematical analysis that applying
probability theory to mathematical analysis has its unique importance. Probability theory is based on
measure theory, which is also a core tool for modern mathematical analysis such as Lebesgue
integrals and function space theory. The introduction of probability measures is the unmeasurable
set-in analysis. Generalized integration and other problems provide more rigorous mathematical
descriptions, while expanding the research scope of function spaces. Mathematical analysis mainly
studies deterministic phenomena, while probability theory incorporates randomness into
mathematical frameworks through tools such as random variables and distribution functions. The
combination of the two can handle complex problems such as stochastic differential equations and
stochastic integrals, enriching the research objects of analysis. Techniques in probability theory, such
as randomization and Monte Carlo methods, are used in theorem proofs for mathematical analysis.
For example,    has already been proved [1], but it can also

be proved by probability theory.
The development of approximation theory has promoted the development of functional and other

branches of mathematics. At the same time, Bernstein polynomials are very important in
approximation theory. The functions which can be approximated by Bernstein polynomial have very
good properties. For instance, if the Bernstein polynomial belongs to the class of Lipschitz
functions, then the function it approximates also belongs to the class of Lipschitz functions [2]. In
this article, the author will mainly talk about how to use Bernstein polynomial to prove the
Weierstrass approximation theorem.

2. Method and theory

2.1. Weierstrass approximation theorem

Theorem: If    is a continuous complex function on  , there exists a sequence of polynomials  
 such that

(1)

uniformly on   , and    can be taken real if    is real. The theorem was firstly found by
Weierstrass. The theorem is proved by some techniques in mathematical analysis which are quite
difficult [3]. Below is the proof.

Proof: First the author assumes that,   , since    is a random interval. Else,
assume   . Because if the theorem is proven in this situation, set  

 . In this case   , and if   
can be derived as the limit of polynomial uniform convergence sequence, it can be easily proved that
the same situation is also correct for   , since    is also a polynomial.

To continue,    is defined to be 0 as    is not concluded in   . In order let    to be
uniformly continuous on the interval. Put

(2)
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where    is chosen so that   . More information about the order of magnitude
of    should be known, as

(3)

It follows from Eq. (3) that   .
The inequality    which is used the author above can be proved by taking

the consideration of the function   . The function equals to 0 when    equals to
0 and its derivative is non-negative on the interval   . For any   , Eq. (3) indicates

(4)

so that    uniformly in   . Set

(5)

The assumptions listed above about    show that

(6)

What is more, the last integral is obviously a polynomial included in   . Therefore    is a
sequence of polynomials. If    is real, then the polynomials are real.

Given   , let    such that    indicates   . Let  
 . Using (1), (3), and the fact that   , for   ,

(7)

for all    which is large enough. Now the theorem is proved.
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Obviously, this method is very complicated. So, can the polynomial approximation of continuous
functions be transformed into a problem of probabilistic expectation, and use probability theory
methods to prove this theorem? This can be achieved using Bernstein polynomial and probabilities
methods.

2.2. Bernstein polynomial

Definition: For a continuous function   , the Bernstein polynomial of degree    is
defined as    [4].

This can be reinterpreted as the expectation of a binomial random variable:  
 , where   . Assume that   , and

standardized random variable    , its expectation is   , variance is  

 .Next, to build the realtion between Bernstein polynomial and the expectation,

the polynomial coefficients can be interpreted as probability mass function of the binomial
distribution   .So for any   ,

(8)

This step is achieved by Jensen inequality in order to control the absolute value of the
expectation. With the continuity of a function,   

(9)

Next, the expectation can be divided into two parts:

(10)

The second part has an upper bound:

(11)

Finally,

(12)

  take the    which satisfies the continuity condition, then take   ,

(13)

Now the theorem is proved by Bernstein polynomial and probabilities methods. The author also
wants to make a comparison between traditional mathematic analysis proof and probabilities
methods proof.

In traditional analytic proofs,  explicit computation of Bernstein polynomial coefficients is
required to approximate continuous functions . This involves cumbersome algebraic
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manipulations and often leads to computational errors. What is more, proof relies heavily on
intricate combinatorial summations. These steps obscure the intuition behind the Weierstrass
approximation theorem, requiring advanced analysis skills to grasp . The complexity of coefficient
manipulation and combinatorial arguments makes the proof inaccessible to beginners, as it
prioritizes algebraic rigor over conceptual clarity.

In contrast, probabilistic methods circumvent the explicit construction of polynomial coefficients.
By leveraging the linearity of expectation and applying Jensen’s inequality, the proof becomes more
natural. The error estimation is simplified using variance, avoiding advanced techniques . This
approach not only enhances clarity for novices but also establishes a profound connection between
probability theory and mathematical analysis.

3. Results and applications

3.1. Core methodologies and technical features

The author has already used the Bernstein polynomial to prove Weierstrass approximation theorem.
To derive more general and detailed conclusions, it is necessary to summarize the core ideas in the
procedure of proof.

The first step is about constructor. Bernstein polynomial approximates functions through discrete
sampling points, its standard form is:

(14)

where    is the degree of the polynomial,    is the sampling values at equally spaced nodes
  . Bernstein polynamial can be regarded as the weighted average of function values, with
weights determined by the binomial distribution   . Essentially, they represent an
expectation approximation in a probabilistic sense.

Then, the second issue is the convergence and error analysis of Bernstein polynomial. According
to Weierstrass theorem shown in Eq. (1), when   ,    converge uniformly to a
continuous function on the interval   . For the convergence speed, the error bound is related to
the smoothness of the function, if    satisfies the Lipschitz condition. This condition states that
for functions which are defined on a subset of the real number set   , if there exists a
constant   , s.t.    for   . The minimum constant    for    is

called the Lipschitz constant for   . Then the error bound is   ; if    is second-order

continuously differentiable, then the error bound comes to   . Finally, the third step is method
characteristics and optimization.

Before closing, the author shall give a remark the advantages. Bernstein polynomial possesses the
properties of preserving non-negativity and monotonicity, and they do not exhibit the Runge
phenomenon due to uneven spacing between interpolation nodes. What is more, the values of
Bernstein polynomial always lie within the convex hull of the function’s sampling points, making
them suitable for geometric modeling, such as in the case of Bezier curves.

Furthermore, to obtain deeper conclusions, talking about some limitations are necessary. When
the computation of binomial coefficients involves large amounts,    needs to be combined with
recursive or numerical optimization methods. Else, in the approximation of functions with non-
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uniform nodes or high oscillations, it is necessary to combine with other basis functions(such as
Chebyshev polynomials) to improve efficiency.

In conclusion, Bernstein polynomial achieves function approximation in the form of probability
weighting, combining both theoretical completeness and practical engineering applicability.
However, balancing its efficiency and accuracy requires adjusting parameters or combining with
other approximation methods according to specific problems.

3.2. Some applications of approximation theory

The author has already proved that Weierstrass approximation theorem can be proved by Bernstein
polynomial. However, approximation theory also holds a significant position in other fields.

First, stable numerical interpolation , in numerical analysis, high-degree polynomial interpolation
often suffers from the Runge phenomenon, where oscillations amplify near interval endpoints.
Bernstein polynomials mitigate this issue through their shape-preserving and smoothing properties.
By design, they avoid overshooting and maintain non-negativity, ensuring stable approximations
even for noisy data. This stability is critical in engineering simulations, where robustness outweighs
the need for rapid convergence [5].

Second, geometric modeling: Bézier Curves , Bernstein polynomials form the mathematical
backbone of Bézier curves, the cornerstone of computer-aided design (CAD) systems. A Bézier
curve of degree    is expressed as:   , where    are
Bernstein basis functions, and    are control points. The convex hull property (guaranteed by the
non-negativity and partition of unity of Bernstein polynomials) ensures curves remain within the
convex hull of control points, enabling intuitive shape manipulation in graphic design and animation
[6].

 Third, image processing and feature extraction,  in image segmentation, Bernstein polynomials
are employed to approximate object boundaries. By fitting polynomial curves to pixel data, they
enable efficient representation of complex shapes with minimal control points. This technique is
particularly valuable in medical imaging for reconstructing organ contours or tumor margins from
discrete voxel data. Additionally, their smoothness reduces aliasing artifacts in image resizing
algorithms [7].

 Forth, emerging applications in machine learning , recent advances explore Bernstein polynomials
as activation functions or basis functions in neural networks. Their bounded derivatives and
smoothness enhance training stability for regression tasks, especially when modeling physical
systems governed by continuous but non-analytic laws.

All in all, Bernstein polynomials bridge theoretical mathematics and practical engineering [8],
offering a robust framework for approximating continuous functions. From foundational proofs in
analysis to real-world applications in CAD and image processing, their unique blend of simplicity,
stability, and geometric interpretability ensures enduring relevance. As computational demands
grow, these polynomials will likely inspire new algorithms at the intersection of approximation
theory and data-driven modeling [9]. Their legacy exemplifies how abstract mathematical constructs
can evolve into indispensable tools for technological innovation.

4. Conclusion

This paper presents a novel probabilistic approach to establishing the Weierstrass approximation
theorem via Bernstein polynomials, highlighting the synergy between probability theory and
mathematical analysis. By interpreting Bernstein polynomials through the lens of Bernoulli trials

n C (t) = ∑n
i=0 Bi,n (t)Pi     t ∈ [0,1] Bi,n (t)

Pi
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and leveraging the law of large numbers, the author demonstrates the uniform convergence of
polynomials to continuous functions. The proposed methodology simplifies computational
procedures while maintaining rigorous convergence guarantees, offering an instructive example of
cross-domain synergy. The technical contributions involve bounding the approximation error
through variance analysis and employing piecewise estimation to address non-uniform continuity.
The results reveal that Bernstein polynomials achieve function approximation in the form of
probabilistic weighting, combining theoretical completeness with practical engineering applicability.
However, balancing efficiency and accuracy requires adjusting parameters or combining with other
approximation methods according to specific problems. Overall, this work deepens insights into
stochastic processes and deterministic analysis, enriching the research scope of function spaces.
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