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Abstract. Proper time and time dilation, though well-established in special relativity, are
predominantly analysed for point particles. Much less attention has been given to how
proper time behaves across spatially extended rigid bodies in inertial motion. Existing
studies have explored differential aging effects under relativistic rigid motion, but primarily
in scenarios involving acceleration. Therefore, this paper aims to investigate how proper
time varies across different points of an extended object experiencing purely inertial motion,
focusing on how the different clock synchronisation conventions affect the overall
desynchronisation in proper time. This paper uses classical formulations of special relativity
in order to contribute to a new perspective on the role of simultaneity in distributed time
frames. This paper discovered that the two primary clock synchronization conventions— the
Einstein convention and slow clock transport—produce comparable desynchronization in
proper time; however, each method presents distinct advantages and disadvantages in
practical contexts, necessitating a complementary approach to effectively address
desynchronization in applications like satellite communication.
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1. Introduction

The treatment of proper time, which is defined as the integral of an observer’s worldline (the
observer’s trace on a space-time diagram), has traditionally focused on point-like observers or
isolated clocks. One example is the study of the twin paradox, in which the aging of two observers,
often modelled as particles with point-based clocks, is compared. In these studies, little attention has
been given to systems composed of spatially extended bodies. While Ben-Ya’acov’s work on
accelerated rigid motion advanced differential aging analysis, it neglected inertial motion scenarios
where simultaneity alone drives proper time variations [1]. This paper seeks to fill this gap by
analysing proper time within a spatially extended rigid body in inertial motion, specifically
investigating how standard clock synchronization conventions influence proper time readings of
clocks distributed throughout the extended body and determining whether these clocks can register
differing elapsed proper times for events deemed simultaneous in a specific inertial frame. This
investigation may be relevant not only to the conceptual understanding of special relativity but also
to practical situations, such as satellites and relativistic spacecrafts, where a precise calculation of
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clock synchronisation across the spatially separated system is essential. The paper aims to use
theoretical analysis based on the Lorentz transformations. An ideal Born-rigid body in uniform
motion with ideal clocks distributed along its spatial extension is modelled. Using Lorentz
transformations and concepts of simultaneity, the paper will examine how time intervals change
between a stationary frame and the frame of the rigid body, with extra attention on comparing proper
time intervals measured by different clocks. The paper aims to rely solely on Lorentz derivations
and spacetime diagrams to ensure the simplicity of the explanations.

2. Theoretical background

2.1. Lorentz transformations and simultaneity

Einstein’s theory of special relativity relies on the postulates of the principle of relativity and the
constant value of the speed of light across all inertial frames [2]. Using two facts: both S and Sʹ are
inertial frames and Sʹ is traveling at speed v relative to S such that an observer sitting at the origin of
Sʹ (  ) would move along the trajectory of    in S, the function can be written as the
following in its simplest form.

(1)

The reverse transformation of    can be written when considering the same
restrictions but from the other frame.

Using the postulate that the speed of light c is the same in both S and Sʹ,    and   
can be substituted into the above to find γ, which is the Lorentz factor.

(2)

This then allows the formulation of the second transformation by combining    and
  .

x′ = 0 x = vt

x′ = γ(x − vt)

x′ = γ(x − vt)

x = ct x′ = ct′

γ = √ 1
1−v2/c2

x′ = γ(x − vt)

x = γ(x′ + vt′)

x = γ (γ (x − vt) + vt′)

x = γ2 (x − vt) + γvt′

γvt′ = x − γ2 (x − vt)

γvt′ = x (1 − γ2) + γ2vt

γvt′ = x(1 − 1
1−v2/c2 ) + γ2vt

γvt′ = x(1 − c2

c2−v2 ) + γ2vt

γvt′ = x( −v2

c2−v2 ) + γ2vt
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(3)

The Lorentz transformation results in the relativity of simultaneity as it entails that equal t is not
identical to equal tʹ, suggesting that two events that are simultaneous in one inertial frame are not
simultaneous in any other inertial frames with relative constant velocity—as long as v is non-zero,
the lines of simultaneity (given by: time value in the host frame=constant) will always be shifted
when transforming to different frames.

2.2. Proper time

The invariant interval of two events, a measure of the separation of two events in spacetime that is
the same for all inertial observers, is given by the following (for simplicity, one spatial dimension x
is assumed) [2,3].

(4)

For a particle at rest at the origin of Sʹ, the invariant interval of two points on the particle’s
worldline is simply given by c2Δt2, and, instead of t, τ (proper time) can be used to entail the time
experienced by the particle in its trajectory.

(5)

If the particle is moving at v, the proper time experienced between an infinitesimal separation of
its trajectory is given by the following.

(6)

γvt′ = −v2x( 1
c2−v2 ) + γ2vt

t′ = −vx(
1

c2−v2

γ ) + γt

γ = √ 1
1−v2/c2 = √ c2

c2−v2

c2−v2 = c2

γ2

t′ = −vx(
γ2

c2

γ ) + γt

t′ = −vx( γ
c2 ) + γt

t′ = γ (t − vx
c2 )

ct′ = γ (ct − vx
c
)

Δs2 = c2Δt2 − Δx2

Δτ = Δs
c

dτ = √dt2 − dx2

c2 = dt√1 − v2

c2 = dt ⋅ 1
γ
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2.3. Born rigidity

In special relativity, the speed of signal propagation is limited by the speed of light. Max Born
addressed this in 1909 by introducing the concept of Born rigidity, which deemed a body as Born-
rigid if the distance between infinitesimally close points remains constant in the instantaneous rest
frame of the body [4]. Importantly, Born rigidity differs from classical rigidity in its relativistic
compatibility. A classical rigid body cannot deform in any way, but this is incompatible with special
relativity, which states that no information can travel faster than the speed of light. Born's
framework leverages the invariant interval, defining rigidity as constant proper distance between
infinitesimal points in the instantaneous rest frame—a condition observer-independent.

3. Modelling

A Born-rigid body can be modelled, with rest frame Sʹ, moving at v in the x direction relative to a
frame S, with its extension being along the x direction of S as well. There are two clocks placed
along this body: one at the front, one at the rear.

4. Clock synchronisation methods

To examine the variation of proper time among different clocks, the clocks must first be
synchronized inside their own frame, indicating that they should exhibit the same time value for an
event occurring in that identical inertial frame. Various ways exist to accomplish this, each yielding
distinct conclusions regarding the fluctuation of correct time between the two clocks within the
same rigid body model [5].

4.1. Einstein convention

The Einstein convention is a method that relies on the isotropy of the speed of light (i.e., same in all
directions for all frames). Using this, a light signal can be sent from one clock, reflected back from a
second clock, and the second clock can be adjusted so that the time of event of signal reflection is
halfway between emission and reception at the first clock [6,7].

Say that the rigid body has length L in its rest frame Sʹ, then the two clocks, A and B, have
coordinates    and    respectively. In Sʹ, the clocks are synchronised and are at rest,
so the proper time of each clock equal tʹ.

(7)

Assume two events, 1 and 2, that are simultaneous in frame Sʹ. Event 1 occurs at coordinates ( 
 ,   ) and (  ,   ) for clocks A and B in Sʹ, respectively. In S, event 1 occurs

at (  ,   ) for clock A; for clock B, event 1 occurs at time coordinates   ,
and since   ,    for clock B in S.

Therefore, in frame S, for an event simultaneous in Sʹ, clock B is delayed by   , which
is unsurprising given the relativity of simultaneity.

To examine the proper time accumulated by each clock, both clocks can be allowed to reach  
 . Now, during this interval, both clocks accumulate the same amount of proper time in S as

they move at v in S. However, since it is established that, in S, clock B always start later than A by  

x′A = 0 x′B = L

ΔτA = ΔτB = Δt′

t′ = 0 x′ = 0 t′ = 0 x′ = L
t = 0 x = 0 t′ = γ (t − vx

c2 )

t′ = 0 t = γ vx′
c2 = γ vL

c2

Δt = γ vL
c2

t′ = T
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 , the desynchronisation in proper time of two clocks can be calculated by putting this Δt
into the proper time formula to find the desynchronisation in proper time between the two clocks.

(8)

This reflects that simultaneity (clock agreement) is frame-dependent in uniform inertial motion.

4.2. Slow clock transport

First, the two clocks in the exact same location, say at   . Clock B is moved at some speed u
away from A along the body, where    (u is defined form the frame S) [8]. During this, B’s
proper time is dilated compared to tʹ, given by   , where γ is a function of u. Given that  

 ,   , meaning that γ is extremely close to 1. Therefore, it can be concluded that the
time dilation effect on B relative to frame Sʹ (A and the rigid body) is minimal, proving that the slow
clock transport method ensures A and B to be closely synchronised without relying on the isotropy
of light.

Now, say there are another two events, 1 and 2, where event 1 is when B starts moving away
from A with u and event 2 is when B reaches L (the end of the body). Unlike the situation under the
Einstein convention, the slow clock transport results in a very small difference in proper time
accumulation from    to    in S because the presence of u.

(9)

For simplicity, both proper times are approximated using binomial approximations (given that  
  and   ) to the first order. Higher orders of these binomial series can be

ignored since the next orders for the first expansion are:    …. For common
Low Earth Orbit satellites, v is around 10,000 ms-1, which, compared to the speed of light, give
values of magnitude 10-18 for the    term, and the magnitude would get smaller for higher
orders. Therefore, it is sufficient to say that higher magnitudes can be ignored. It is also established
that u is extremely small, so the second expression possess a similar nature and can also be
approximated. The u2 term in the second expansion is also ignored since u is small.

Therefore, the desynchronisation in proper time of clocks A and B is given by:

(10)

In frame S, length L would change by a factor of    given length contraction, so   .
Therefore, the proper time desynchronisation is given by the following.

Δt = γ vL
c2

Δτdsync = 1
γ ⋅ Δt = 1

γ ⋅ γ vL
c2 = vL

c2

x′ = 0
u ≪ c

dτ = dt′ ⋅ γ
u ≪ c u2

c2 ≪ 1

t′ = 0 t′ = T

dτA = dt√1 − v2

c2 = dt(1 − v2

c2 )
1
2

≈ dt(1 − v2

2c2 )

dτB = dt√1 − (v+u)
2

c2 = dt(1 − (v+u)
2

c2 )
1
2

≈ dt(1 − v2+2vu
2c2 )

− v2

c2 < 1∣ ∣ − (v+u)
2

c2 < 1∣ ∣ − v4

8c4 + v6

16c6 − 5v8

128c8

− v4

8c4

Δτdsync = ∫ T
0
[(1 − v2

2c2 ) − (1 − v2+2vu
2c2 )]dt

Δτdsync = ∫ T
0
(− v2

2c2 + v2+2vu
2c2 )dt = ∫ T

0
vu
c2 dt = vu

c2 ⋅ T

1
γ T = L

γu
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(11)

This is proper time desynchronisation is similar to that of the Einstein convention. However, for
this expression to be true, u must be sufficiently small such that higher orders of the binomial
approximation can be ignored for   .

Considering the actual desynchronisation of this method, this proper time alignment reflects a
different simultaneity convention, emphasizing the fact that simultaneity is not an absolute feature
but depends on the synchronisation process chosen. The advantage of using slow clock transport is
that, unlike the Einstein convention, it avoids relying on propagation of light signals, which can be
easily delayed in non-inertial frames (accelerating or rotating). Slow clock transport can also act as a
secondary method to ensure that synchronisation with the Einstein convention is done correctly,
since the desynchronisation resulting from both methods are extremely similar. That said, because u
needs to be small, slow clock transport is unsuitable for large distance synchronisation.

5. Applications

In general, for any extended inertial systems, like spacecraft or satellite constellations, establishing a
consistent temporal framework becomes essential for coherent operations. The choice of
synchronisation convention has direct implications for communication protocols within these
systems. Understanding and accounting for any desynchronisation are thus crucial in the design and
operation of distributed relativistic systems. There are several existing applications of clock
synchronisation conventions:

The Global Positioning System (GPS) employs Einstein synchronization as the primary protocol
to maintain synchronisation across its satellite constellation. However, due to the rotating frame of
Earth, constant corrections are needed to keep clock readings the same. One example of such
corrections is slow clock transport, which is sometimes used to verify synchronisation under the
Einstein convention. This is inherently constrained, as the GPS requires precision to nanoseconds,
necessitating that the transmitted clock operates at an exceedingly minimal velocity. GPS engineers
establish a specific temporal reference called GPS time, which serves as a theoretical global time
scale synchronized with the Earth-Centered Inertial (ECI) frame. This coordinate time serves as a
common basis for clock synchronisation across satellites, allowing engineers to incorporate aspects
of both special relativity (desynchronisation under Einstein convention and time dilation due to
relative velocity to the Earth) and general relativity (gravitational time dilation) to coordinate
corrections [9,10].

Experimental setups involving networks of atomic clocks serve as critical platforms for verifying
special relativistic predictions, with time dilation being the primary testable phenomenon Notable
experiments include the Hafele–Keating experiment, where atomic clocks sent flying around the
world exhibited measurable time differences compared to stationary clocks. More recent
experiments have achieved increased precision, detecting time dilation effects between clocks
separated by millimetres. These experiments often employ different synchronisation methods to
establish a common temporal reference. The choice of the synchronisation method can lead to
observable variations in the measured time differences [11].

Very-Long-Baseline Interferometry (VLBI), a cornerstone technique in radio astronomy,
demands nanosecond-level synchronization across intercontinental telescope arrays. The telescopes,
which are often located on different continents, simultaneously observe the same astronomical radio
waves and record signals with the help of precise time stamps provided by atomic clocks. Because

Δτdsync = vu
c2 ⋅ L

γu
= vL

γc2

u ≪ c
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the signals are later combined to reconstruct the incoming wavefronts, any miscalculation in timing
down to nanoseconds can lead to reduced imaging accuracy. Methods including Einstein
synchronization, supplemented by corrections from slow clock transport methods, and satellite-
based time standards like the GPS time discussed earlier are employed. This enables VLBI systems
to achieve angular resolutions fine enough to image the event horizon of black holes, as shown by
the Event Horizon Telescope [12].

6. Conclusion

In this paper, the variation in proper time assignment across spatially extended Born-rigid bodies in
inertial motion is examined with a focus on the dependence of synchronisation on the convention
chosen. Under Einstein synchronisation, clocks positioned at different locations along the body are
desynchronised by   , where L is the spatial separation in the rest frame and v is the
inertial velocity relative to the observer. This desynchronisation does not imply a difference in
accumulated proper time as all points share the same constant velocity, but it does affect how
simultaneity surfaces are defined in different frames. In contrast, the slow clock transport method,
which uses gradually moving clocks, yields   , which is similar to Einstein’s to the

first order but differ more when expanded up to higher orders. This highlights the convention-
dependent nature of simultaneity, even in purely inertial scenarios. In actual scenarios, such as with
systems like GPS, where precise global timekeeping is crucial, the selection of synchronization
convention affects the implementation of timing adjustments. Comprehending the impact of
synchronization on accurate time assignments is essential in distributed relativistic systems (e.g.,
spacecraft) and experimental networks of atomic clocks. Future research may improve precision
timing technologies and advance relativistic models to get greater accuracy in positioning systems
for increasingly complicated engineering applications.
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