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Flexible manipulators, owing to their lightweight structure, high degrees of
freedom, and environmental adaptability, hold great promise for applications in medical
surgery, aerospace, industrial inspection, and other fields. However, challenges such as
rigid-flexible coupling, strong nonlinear dynamics, and vibration sensitivity make precise
end-effector positioning a core difficulty. This study constructs a system model for a flexible
manipulator and implements end-position control using Proportional-Integral-Derivative
(PID), Linear Quadratic Regulator (LQR), Sliding Mode Control (SMC), and an improved
Fast Terminal Sliding Mode Control (FTSMC) method. Results show that PID control yields
an overshoot of 4.6% with a settling time of 1.374 seconds, making it suitable for scenarios
with highly accurate models. LQR control results in an overshoot of 5.7% and a settling time
of 3.426 seconds; while energy-optimal under precise modeling conditions, its dynamic
performance (in terms of overshoot and settling time) is inferior. The SMC controller
demonstrates strong robustness with zero overshoot, but it has a slower rise time and
requires attention to chattering suppression. FTSMC also shows strong robustness and
eliminates overshoot, while achieving faster rise times, albeit with chattering issues that
need to be addressed. This study identifies new application scenarios for the four
representative control strategies and analyzes their respective strengths and limitations.
Future work may focus on adaptive optimization by integrating fuzzy logic and neural
networks, as well as improving practical applicability through robust control, model order
reduction, and nonlinear control techniques.

Flexible Manipulator, Dynamic Modeling, Precise End-positioning, Fast
Terminal Sliding Mode Control

Flexible manipulators have been increasingly applied in fields such as aerospace, construction
machinery, and medical surgery due to their unique performance advantages [1]. Compared with
traditional rigid manipulators, flexible manipulators exhibit notable features such as lightweight
structure [2], large working radius, high mobility, high payload-to-weight ratio [3], and low energy
consumption. These characteristics make them particularly competitive in tasks that involve
complex environments and demand high precision. However, during motion, flexible manipulators
inevitably generate elastic vibrations, which significantly impair the positioning accuracy of the end-
effector, thereby limiting their applicability in high-precision operations.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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In practical applications, the vibration coupling effects among multiple joints of flexible
manipulators further increase the complexity of dynamic modeling. Establishing an accurate
dynamic model is fundamental to achieving effective control. However, current dynamic modeling
methods face significant computational burdens and complexity when dealing with multi-degree-of-
freedom flexible manipulators. Moreover, the ability to accurately and promptly measure the
vibration states of flexible manipulators is critical for achieving precise control. Yet, existing
measurement technologies still fall short in terms of both accuracy and real-time performance.
Therefore, the development of efficient measurement techniques and the design of highly robust
control algorithms are of great theoretical significance and practical engineering value for enhancing
vibration suppression and precise positioning control of flexible manipulators.

2. Modeling of the flexible-link manipulator
2.1. Coordinate system establishment and parameter definition

This study focuses on a two-degree-of-freedom flexible manipulator to establish coordinate systems
and define the relevant parameters. A fixed coordinate system O is introduced, along with moving
coordinate systems O1 and O2, which are rigidly attached to Link 1 and Link 2, respectively. The
parameters are defined as follows: 81nand 02: joint angles; 11 and 12: lengths of Link 1 and Link 2;
ml and m2: masses of Link 1 and Link 2; J1 and J2: moments of inertia of Joint 1 and Joint 2; p1
and p2: mass densities per unit volume of Link 1 and Link 2; A1 and A2: cross-sectional areas of
Link 1 and Link 2.

E1 and E2: elastic moduli of Link 1 and Link 2; I1 and I2: area moments of inertia of Link 1 and
Link 2. The physical meanings of these parameters are illustrated in Figure 1.

X

Figure 1. Schematic diagram of the spatial position of the multi-joint flexible arm
2.2. Dynamic modeling

The dynamic model is established using the Lagrangian method, and the resulting dynamic
equations are linearized. The dynamic model of the flexible manipulator is thus obtained as follows

[4]:
Magn+Cq’+ Kq=Q (1)

where M is the generalized mass matrix, K is the generalized stiffness matrix, and C represents
the system damping, which can be modeled using Rayleigh damping:
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C=aM+a1K )
a,and o, are the proportional coefficients of Rayleigh damping.
2.3. Kinematic modeling

Considering that the primary objective of this report is vibration suppression of the flexible
manipulator system, the kinematic modeling focuses mainly on the end-effector kinematics. The
displacement at the end of the manipulator is primarily caused by the flexible deformation of the
links [5], and can be expressed as:

n

(t) = qi(t)¢i() 3)

i=1

qi(t) is the generalized coordinate of the i-th mode, ¢i(x) is the mode shape function of the i-th
mode, and n is the number of modes considered. The time response of the modal coordinate qi(t) can
be obtained by solving the dynamic equations. Assuming the system is subjected to an excitation at
the initial time, the time response of the modal coordinate can be expressed as:

q; (t) = A;cos (w;t) + B;sin (w;t) 4)

Ai and Bi are determined by the initial state x0 and the mode shape function ¢i(x), and i is the
natural frequency of the i-th mode.

3. Controller design

Based on the kinematic and dynamic models of the flexible manipulator established in the previous
section, this section focuses on addressing the control design challenges caused by the system’s
multivariable strong coupling characteristics and nonlinear dynamic features. Following the
principle of progressive comparative design, three control strategies are designed sequentially: PID,
LQR, Sliding Mode Control (SMC), and Fast Terminal Sliding Mode Control (FTSMC). Their
complexity follows the progressive design principle of "linear compensation — robustness
enhancement — fast finite-time convergence" [6].

3.1. Control objective

For the vibration suppression requirements of the dual flexible arms, the practical control objective
is that the end-effector displacement of the manipulator along the y-direction equals zero (the radial
displacement of the Bernoulli beam in the application scenario can be neglected) [7]. To facilitate
controller design, the control objective is further refined as ensuring the vibration variables qi
converge to zero.
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3.2. PID

In response to the vibration suppression requirements of the dual flexible manipulator system, this
subsection develops a solution based on classical PID control [8]. The core element of the control
architecture is clarified first: the controlled variable is the end-effector vibration displacement,
whose dynamic characteristics can be modeled as [9]:

n

(t) = Z (Ajicos (w;t) + Bjsin (w;t))¢; (L) (%)

i=1

The actuators selected are the drive motors of Joint 1 and Joint 2, producing output torques tl
and 12. To verify their disturbance rejection performance (i.e., vibration suppression capability), a
disturbance is designed as an initial vibration caused by a 10 N external force applied at the end-
effector. The control system is required to satisfy the following specifications: overshoot less than
5%, settling time less than 2 seconds, and steady-state error approaching zero.

Based on the principle of structural decoupling, a decentralized control strategy is employed to
design independent controllers for the two joints. The controller for Joint 1 only handles the state
variables and their derivatives related to Joint 1, while the controller for Joint 2 independently
processes the state variables associated with Joint 2. The control laws for the two joints are
expressed respectively as follows [10]:

Tl = —Kpq1 — Ki f(f q1 (§)d€ — Karga (6)

T2 = —Kjq2 — Kjp fot g2 (§)d€ — K 24> (7)

Proportional term Kp: provides a “stiffness” restoring force proportional to the vibration
displacement; Derivative term Kd: introduces virtual damping to suppress vibration velocity;
Integral term Ki: eliminates steady-state error (such as static deformation caused by gravity).

3.3. LQR-based controller design
3.3.1. System model transformation

Assume that the dynamic model of the manipulator can be represented as a linear time-invariant
system:

'(t) = Adz (t) + Bdu (t) (8)

Where x(t) is the system state vector, u(t) is the control input vector, A is the state transition
matrix, and B is the input matrix.

3.3.2. Cost function

The objective of LQR is to minimize the following quadratic cost function:
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J = /0 N (2" ()Qz (t) +u” (t)Ru(t))dt 9)

Q is the state weighting matrix, and R is the control input weighting matrix, which are usually
chosen as diagonal matrices [10], with Q>0,R>0.

3.3.3. Controller design
According to LQR theory, the optimal control input u(t) can be expressed as [11]:
u(t) = —Kz (¢) (10)
Where K is the feedback gain matrix, which can be obtained by solving the Riccati equation:
ATP+ PA—PB;R'BIP+ Q=0 (11)
Solve the above Riccati equation to obtain matrix P, and then compute the gain matrix K:
K=R'BIP (12)

Typically, Q is chosen as a diagonal matrix, with diagonal elements adjusted according to the
importance of the state variables [12]. R is selected as a diagonal matrix, with diagonal elements
adjusted based on the cost of control inputs.

3.4. Classical sliding mode control design
3.4.1. Sliding surface definition

With the objective of attenuating elastic modes, the sliding surface is designed as:

s1=q1+ \q1 (13)

s2 = g2 + Aa2q2 (14)

Where the sliding surface sl is a linear combination that relates the elastic modal displacement qi
(describing the bending deformation of the link) and its velocity q'i (describing the rate of change of
bending deformation). The parameter Ai>0 determines the convergence rate of the sliding surface
[13]. When si=0, the system is on the sliding surface, and the following holds:

gi (t) = gi (0)e (15)
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Elastic vibrations decay exponentially. A larger Ai accelerates the decay but may increase the
demand for control input. The physical objective of sliding mode control is to drive the system states
(elastic vibration modes) onto the sliding surface, i.e., si=0, by means of control torques, thereby
suppressing the vibrations [14].

3.4.2. Control law derivation
By decoupling the dynamic equations, we obtain:

7 = =b;  (fi + Nidi + mysign (s;) + k;s;) (15)
3.5. Fast terminal sliding mode control design

To avoid singularity issues in the manipulator system and ensure global finite-time convergence of
the system [15], a product form of the sign function and absolute value power is introduced to
prevent the emergence of complex terms, thereby overcoming the singularity problem. Accordingly,
a nonsingular fast terminal sliding surface function is designed as:

o1 = q1 + Ausign (1) /g™ + Mzsign (g1) / g1 (16)

o2 = g2 + Aa1sign (q2) /|| + Naasign (g2) / |da| ™ (17)

It 1s evident that when the manipulator system tracking error is near the equilibrium point, the
higher-order terms in the sliding surface can be neglected, and the sliding mode system exhibits a
relatively fast convergence speed; when the tracking error is far from the equilibrium point, the
convergence time of the manipulator system is mainly dominated by the higher-order terms in the
derivative of the nonsingular fast terminal sliding surface, and the state variables still have a large
convergence rate. These two parts together ensure that the manipulator system can achieve rapid and
accurate global convergence within a short time. Based on this, the classical sliding mode controller
can be improved, and the fast terminal sliding mode controller is designed as follows:

i = —b; ' (Fi 4+ Apid + Moigi + misign (o) + kis;) (18)

Where —bl is used to map the state-space variables to the input space,fi is the feedforward
component used to compensate for the nonlinear terms in the system; Apiq+Aviq 1 is a typical
proportional-integral (PI) component, serving as the nominal part of the feedback control;
nisign(oi)+kisi is the robust sliding mode term, ensuring the system operates on the sliding surface
and resists disturbances.

4. Simulation of end-effector vibration suppression and positioning control of flexible
manipulator

The linearized dynamic model of the two-degree-of-freedom flexible manipulator can be expressed
as:
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Msqn(t) + Kéq <t) = bu (t) (19)

— Mo Moy - l(Kl)hz 0244 20)

I o )
Mgf Mff 4x2 2 )44
The specific parameter values used in the simulation experiments are listed in Table 1.

Table 1. Simulation data of flexible manipulator

flexible arm lengthL/m Quality Moment of inertia of the rod cross-section Elastic modulus Lumped mass at the joint

m/Kg I/m4 E/Pa M/Kg
L1 0.475 0.374 16x10-11 2.06x1011 2.94
L2 0.435 0.29 6.75%10-11 2.06x1011 1.343

4.1. PID controller

With PID Control

-0.05

-0

Time (s)

Figure 2. Displacement simulation curve after PID control

The PID controller achieves a balance between dynamic response speed and stability, with an
overshoot of 4.6% and a settling time of 1.374 seconds, making it suitable for scenarios with
relatively accurate models, as shown in Figure 2.
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Figure 3. LQR simulation curve

As shown in Figure 3, under LQR control, the flexible manipulator ultimately reaches a stable
state, achieving precise end-positioning. The overshoot is 5.7%, and the settling time is 3.426
seconds. The LQR controller is energy-optimal when the model is accurate, but its dynamic
performance (overshoot and settling time) is relatively poor.

4.3. Sliding mode control
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Figure 4. Simulation curves of synovial control

controller exhibits strong robustness and zero overshoot, but has a slower rise

time and requires chattering suppression, as shown in Figure 4.
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4.4. Fast terminal sliding mode control

End displacement under rapid terminal sliding-mode control
|

End displacement (m)

Figure 5. Simulation curves of fast synovial control

The fast terminal sliding mode controller exhibits strong robustness and zero overshoot, with a
faster rise time but requires chattering suppression, as shown in Figure 5.

5. Research summary

In the end-position control of flexible manipulators, the four typical methods each have their
applicable scenarios and room for improvement: PID control, with its simple structure and ease of
engineering implementation, is suitable for simple industrial scenarios such as agricultural picking
that require moderate precision. However, it exhibits weak high-frequency vibration suppression and
depends on empirical parameter tuning. Future improvements may be achieved by integrating fuzzy
control and neural networks for adaptive optimization. LQR control performs excellently in
laboratory environments with accurately known models or in multivariable coupled systems, but it is
limited by strong model dependency and high computational complexity. Its practicality needs
enhancement through robust control, model order reduction, and nonlinear control techniques.
Sliding Mode Control (SMC), due to its strong disturbance rejection and robustness, is widely
applied in harsh environments with large load variations and strong uncertainties. However,
chattering issues and the deceleration of convergence speed in later stages restrict its performance,
which can be improved via higher-order sliding mode design and adaptive laws. Fast Terminal
Sliding Mode Control (FTSMC) meets the stringent demands of rapid and precise positioning with
finite-time convergence, as required in medical microsurgery. Nevertheless, it faces local
convergence limitations and singularity risks, necessitating development toward global nonsingular
sliding modes and multimodal hierarchical control. Currently, flexible manipulator control faces
common challenges including the complexity of rigid-flexible coupled modeling, multi-objective
optimization conflicts, and hardware computational bottlenecks. Future trends focus on intelligent
algorithms (e.g., integration of deep learning and control), distributed cooperative control,
integration of novel sensors and actuators, and innovative control mechanisms inspired by
biomechanics, to promote a deep integration of theoretical research and engineering applications.
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