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Abstract. A patient-centric digital-twin architecture that fuses ontology-grounded knowledge
graphs with structural causal inference is presented to simulate the five-year evolution of
type 2 diabetes mellitus and cardio-renal comorbidities. A harmonised health-information-
exchange corpus comprising 12 318 adults, 22.7 million encounter rows and 7.4 million
laboratory records (2010 – 2024) was mapped to a 168 402-node, 1 217 965-edge graph
aligned to SNOMED-CT. Counterfactual trajectories under 17 therapeutic bundles were
generated by a differentiable do-calculus engine nested inside a temporal graph transformer,
producing 1 000 Monte-Carlo roll-outs per patient. External validation on an independent 2
975-subject cohort yielded a dynamic concordance index of 0.842, an integrated Brier score
of 0.091 and a calibration-in-the-large of –0.013, surpassing recurrent neural and
mechanistic baselines by 18.5 % and 11.2 % respectively. Sensitivity analyses confirmed
robustness to 24 % MCAR missingness and ±15 % hidden-confounding bias. The findings
demonstrate that knowledge-graph-driven causal twins deliver granular, well-calibrated
forecasts and quantitatively rank preventive strategies, paving the way for learning-health-
system deployment in chronic-disease management.
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1. Introduction

Chronic non-communicable diseases generate 74 % of global mortality, with type 2 diabetes mellitus
(T2DM) imposing a cumulative economic burden exceeding USD 1.3 trillion annually through
micro- and macro-vascular sequelae that unfold over decades. Although electronic health records
(EHRs) and wearable telemetry now capture high-frequency, multimodal patient data, prevailing
predictive models remain correlation-driven snapshots incapable of explicit counterfactual reasoning
across the heterogeneous pathways that link glycaemic control, renal decline and cardiovascular
events [1]. In parallel, the digital-twin paradigm, virtual replicas that synchronise continuously with
their physical counterparts, has matured in aerospace and Industry 4.0 but lags in healthcare, where
data sparsity, semantic fragmentation and causal ambiguity hamper faithful biological emulation.

Current diabetes digital twins bifurcate into physiology-based simulators that parameterise
glucose-insulin kinetics and deep recurrent architectures that exploit black-box sequence learning;
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neither group models the high-order semantic relations encoded in biomedical ontologies, nor do
they quantify the interventional effects of diverse treatment bundles on multi-organ endpoints [2].
Consequently, clinicians lack an evidence-based sandbox to test “what-if” scenarios such as whether
intensifying statin therapy or recommending 10 000 steps d⁻¹ offers greater reno-protection for a
specific patient whose estimated glomerular filtration rate (eGFR) is trending downward [3].

This study proposes a knowledge graph-driven causal digital twin that (i) converts heterogeneous
longitudinal EHR streams into an ontologically coherent graph of patient states, therapies and
outcomes; (ii) learns causal structure via a differentiable additive-noise model with sparsity
regularisation; (iii) embeds the resulting structural causal model in a temporal graph transformer to
simulate individual disease trajectories under arbitrary intervention schedules; and (iv) validates
performance against rigorous discrimination, calibration and robustness criteria on both internal and
external datasets, thereby establishing a reproducible blueprint for precision management of chronic
disease.

2. Literature review

2.1. Knowledge graph representation in clinical domains

Early biomedical knowledge graphs focused on gene–disease associations but have evolved to
encode phenotypes, therapeutic pathways and temporal event chains, achieving interoperability
through common-data-model initiatives and boosting downstream tasks such as adverse-drug-
reaction signalling and treatment recommendation accuracy [4]. Nevertheless, most implementations
terminate at correlation rather than embedding formal causal semantics, limiting their capacity to
project interventional futures in chronic-disease settings.

2.2. Advances in causal inference for longitudinal health data

Propensity-based weighting, marginal structural models and targeted maximum-likelihood
estimation mitigate confounding in tabular cohorts, yet expressiveness shrinks as dimensionality and
temporal resolution rise. Neural-causal hybrids incorporating attention or variational structure
learning offer scalable alternatives, but empirical deployments on broad chronic-disease registries
remain sparse, often constrained by incomplete domain priors [5].

2.3. Digital twins for chronic-disease management

Physiology-driven twins replicate glucose kinetics at millisecond granularity, while data-centric
twins extend forecast horizons via deep recurrent networks (Figure 1) [6]. However, uncertainty
quantification, multi-system integration and transparent causal reasoning remain under-developed.
Embedding explicit knowledge graphs into digital twins provides a route to holistic, explainable and
counterfactually valid simulation.
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Figure 1. An LSTM cell, where σ is the sigmoid function cell

3. Methodology

3.1. Cohort assembly and data harmonisation

A retrospective, observational cohort of 12 318 adults diagnosed with ICD-10 E11 type-2 diabetes
between 2010 and 2024 was extracted from the Singapore National Health Data Grid, yielding 22.7
million encounter rows and 7.4 million laboratory results [7]. Hospital, primary-care, pharmacy, and
wearable-device feeds were first mapped to the Observational Medical Outcomes Partnership
(OMOP) common-data model, after which continuous variables were resampled to 30-day bins via a
last-observation-carried-forward kernel with a masking probability of 0.17, while categorical events
were one-hot encoded into 94 longitudinal features. Table 1 summarises the baseline phenotype: the
mean body-mass-index sits at 27.1 ± 4.6 kg m⁻², 21.8 % of patients already meet stage-3 chronic-
kidney-disease criteria, and statin penetration is 65.8 %. These distributions confirm that the
derivation set represents a metabolically high-risk but clinically typical South-East-Asian diabetes
population, ensuring external ecological validity for subsequent digital-twin simulations [8].

3.2. Ontology-grounded knowledge-graph encoding

All clinical entities were normalised to SNOMED-CT, RxNorm, and LOINC vocabularies and
embedded with a metapath2vec skip-gram (dimension 256, window 7), creating a 168 402-node, 1
217 965-edge heterogeneous graph with 28 relation types, including temporally weighted
HAS_RESULT and RECEIVED_AT edges. Temporal dosage vectors were stored as edge attributes
and propagated during message passing [9].

3.3. Causal-structure learning via additive-noise optimisation

A differentiable additive-noise model minimised structural risk with rotated coordinate descent
under sparsity penalty λ = 0.015 to produce an acyclic directed causal graph. Treatment effects were
estimated with the inverse-probability-weighted estimator

(1)

where A is exposure, Y the outcome, and e(X) the propensity derived from a gradient-boosted
decision tree with AUROC 0.81 on held-out folds. Covariate-balance diagnostics yielded a
standardised mean-difference < 0.08 for 92 % of features, satisfying exchangeability.

τ̂ = 1
N
∑N

i=1 [ AiYi

e(Xi)
−

(1−Ai)Yi

1−e(Xi)
]
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4. Experimental process

4.1. Training pipeline

Training employed mini-batches of 512 node–time pairs, Adam W optimiser (β₁ = 0.9, β₂ = 0.999,
weight-decay 1 × 10⁻⁵) and cosine-annealed learning-rate starting at 3 × 10⁻⁴ for 120 epochs. Data
augmentation, 10 % random-mask reconstruction and 15 % edge-dropout—retarded over-fitting,
stabilising validation ℓ² loss at epoch 98.

4.2. Hyper-parameter optimisation

Optuna searched 60 trials across latent dimensions (128–256), attention-head counts (4–8) and
sparsity weights (0.05–0.10). The best configuration (latent 192, heads 6, sparsity 0.07) minimised
Bayesian information criterion and yielded a held-out dynamic-C index lift of 0.031 over the median
candidate.

4.3. Counterfactual simulation protocol

Seventeen intervention bundles, spanning pharmacological titrations, Mediterranean-diet adherence
tiers, and step-count goals were executed for each patient via 1 000 Monte-Carlo roll-outs over 60
months. Exogenous noise vectors ε were drawn from empirical residuals to preserve observed
variance, and do-operations modified relevant edge weights in the causal graph before each rollout.

4.4. Metric computation and decision-curve analysis

Time-to-event forecasts were summarised by time-dependent concordance index, integrated Brier
score (IBS) and net-benefit at 10 %, 20 %, and 30 % risk thresholds. Continuous outputs employed
RMSE and 95 % prediction-interval width. IBS was calculated monthly and trapezoid-integrated to
yield area = 0.091, representing a 22.4 % decrement versus the strongest baseline.

4.5. Sensitivity, missing-data and bias analyses

Missing-completely-at-random deletion up to 24 % inflated HbA1c RMSE by only 0.013 %, while
hidden-confounding bias-shift of ±15 % altered average-treatment-effect ranks for only 2 of 17
scenarios. Edge-centrality ablation—removal of the top-decile betweenness edges—deteriorated
concordance by 11.2 %, confirming that high-order semantic connectivity is indispensable for
faithful disease-trajectory simulation [10].

5. Results

5.1. Discrimination and calibration performance

The graph-causal twin achieved a dynamic concordance index of 0.842 (SE 0.004) for five-year
MACRE, eclipsing an LSTM comparator (0.711) and a physiology-based simulator (0.756).
Integrated Brier score reached 0.091 and calibration-slope was 0.97 with intercept –0.013,
underscoring accurate probability scaling.
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5.2. Biomarker-trajectory accuracy

Twelve-month HbA1c RMSE was 0.309 % (95 % CI 0.301–0.317), and the continuous-eGFR
RMSE 5.68 mL min⁻¹ 1.73 m⁻²; prediction-interval widths (95 %) measured 0.87 % and 8.12 mL
min⁻¹ 1.73 m⁻² respectively. Shapiro-Wilk tests confirmed normally distributed residuals (p > 0.21
for all monthly checkpoints).

5.3. Intervention-effect estimates and comparative outcomes

Table 2 details scenario-specific MACRE incidences. The combined GLP-1 receptor-agonist plus
Mediterranean-diet arm reduced MACRE to 73.4 per 1 000 patient-years—an absolute difference of
53.0 events versus standard care and an average-treatment-effect hazard ratio 0.58 (CI 0.54–0.63).
Step-count escalation to 10 000 steps d⁻¹ achieved a hazard ratio 0.71 (CI 0.67–0.76), whereas
intensified basal-insulin titration yielded a more modest 0.86 (CI 0.81–0.91). Decision-curve
analysis placed the composite regimen’s net-benefit at 0.039 at a 20 % action threshold, surpassing
all comparators.

5.4. Robustness and ablation findings

Propensity overlap (0.19–0.87) satisfied positivity; trimming the tails changed hazard ratios by < 3
%. Random 24 % laboratory deletion inflated HbA1c MAE by 4.3 % and MACRE concordance by
0.014, underscoring resilience to missingness. Bias-shift simulations requiring an E-value of 1.96
for the top regimen implied that an unmeasured confounder would need to double MACRE risk to
nullify observed benefit.

5.5. Clinical translation implications

The comparative projections in Table 1 reveal pronounced heterogeneity in risk reduction. The
gradients observed across intervention bundles validate the model’s capacity to rank patient-specific
preventive strategies with quantitatively interpretable metrics. In particular, the 53-event absolute
MACRE reduction projected for the GLP-1 + diet arm aligns with pooled estimates from
contemporary cardiovascular-outcome trials, suggesting that the digital-twin framework can
reproduce trial-grade effect sizes in silico. By embedding such forecasts into point-of-care
dashboards, clinicians could dynamically adjust therapy sequences based on up-to-date causal risk
reduction estimates, thus operationalising precision chronic-disease management in real-world
settings.

Table 1. Scenario-specific five-year MACRE outcomes

Regimen MACRE per 1 000 p-y Δ vs Standard Care 95 % CI Net-Benefit @ 20 %

Standard care 126.4 – – –0.004
Basal-insulin titration 108.7 –17.7 –20.2 to –15.3 0.012

10 k steps d⁻¹ 94.1 –32.3 –35.9 to –28.8 0.024
GLP-1 + Mediterranean diet 73.4 –53.0 –56.8 to –49.2 0.039
Statin LDL < 1.4 mmol L⁻¹ 114 –12.4 –14.9 to –10.0 0.009
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6. Conclusion

This work establishes that integrating ontology-rich knowledge graphs with differentiable causal
inference inside a temporal graph-transformer backbone yields a rigorously calibrated digital twin
capable of projecting complex, patient-specific chronic-disease trajectories and quantitatively
comparing multi-modal intervention strategies. Against extensive internal and external validation,
the proposed model surpassed recurrent and mechanistic baselines in discrimination, calibration and
robustness, retained fidelity under substantial missingness and unmeasured-confounding
perturbations, and produced interpretable hazard estimates aligned with contemporary clinical-trial
benchmarks. Future extensions will incorporate genomic and microbiome layers, address
multimorbid syndemics such as diabetes-cancer interplay, and pilot clinician-facing dashboards to
operationalise the digital-twin loop for real-time decision support within learning health systems.
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