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Abstract. Steady-state visual evoked potential (SSVEP), as a non-invasive EEG signal, is
widely used in brain-computer interfaces (BCI) due to its high signal-to-noise ratio and high
temporal resolution. With advancements in neural engineering, SSVEP-BCI technology has
become one of the important research directions in the fields of medicine, rehabilitation and
human-computer interaction. Despite its potential, SSVEP-BCI systems still face challenges
such as signal stability, individual variability, system portability and interaction naturalness.
This paper explores the relationship between SSVEP and brain function, analyzes its role in
cognitive tasks, and evaluates the mechanism, current status, and challenges of SSVEP-BCI
systems across various fields. By reviewing relevant literature, it examines the mechanism
of SSVEP generation, its application in cognitive neuroscience, and the integration of
SSVEP-BCI with other EEG signals (e.g., P300, motor imagery (MI), and electrooculogram
(EOG)). Studies have indicated that the SSVEP-BCI system has high application value in
brain-computer interaction, especially in the medical field, where it has been widely used in
the rehabilitation of patients with movement disorders and the control of assistive devices.
However, current studies face challenges such as decoding accuracy, system stability, and
individual variability. By focusing on multimodal integration, deep learning, and wearables,
future SSVEP-BCI developments aim to enhance accuracy, stability, and user experience,
broadening their applications in medicine, industry, and entertainment.
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1. Introduction

Non-invasive control systems based on EEG signals are becoming an essential tool in addressing
movement disorders, cognitive impairments, and human-computer interaction, driven by the rapid
advancements in neuroscience and brain-computer interface (BCI) technology. Steady-state visual
evoked potentials (SSVEP), known for their high signal-to-noise ratio and stability, have become a
widely used modality in BCI systems. SSVEP induces EEG activity at the stimulation frequency
through visual stimuli and has become a popular non-invasive brain-computer interface due to its
high transmission efficiency, low equipment requirements, and robustness. In recent years, with the
growing popularity of smart devices and continuous innovation in BCI technology, SSVEP-BCI
systems have made significant progress in the medical field, particularly in rehabilitation medicine
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and control of assistive devices for the disabled, while also demonstrating great potential for
applications in non-medical fields like entertainment, industry, and the military [1,2]. For example,
the SSVEP-BCI system has been successfully applied to virtual reality, robot control, smart home,
and autonomous driving scenarios with a wide range of prospects. However, although SSVEP-BCI
technology has achieved certain results, there are still technical challenges such as poor signal
stability, high individual variability, poor system portability, and insufficient interaction naturalness
in practical applications. Thus, this study aims to explore the generation mechanism of SSVEP, its
application in brain-computer interface systems and the challenges it faces, and to analyse the latest
progress of SSVEP-BCI technology. By reviewing and analyzing relevant literature, it focuses on
SSVEP’s role in cognitive tasks, progress in EEG signal decoding methods, and the application of
multimodal fusion with other physiological signals, providing a reference for the optimization and
further application of SSVEP-BCI systems.

2. The relationship between SSVEP and brain function

2.1. The mechanism of SSVEP generation

SSVEP are are synchronized brain electrical activities generated in the visual cortex in response to
visual stimuli of a specific frequency. SSVEP signals are classified into low-frequency (4-12 Hz),
mid-frequency (12-30 Hz), and high-frequency (>30 Hz) categories according to the stimulation
frequency [3]. Low-frequency signals are easy to detect but have a low signal-to-noise ratio, making
them suitable for applications where signal quality is not a primary concern. Mid-frequency signals
offer a good balance between signal-to-noise ratio and stability, making them suitable for most
applications. High-frequency signals provide high temporal resolution and low noise, but their
stability is poor and they require stringent experimental conditions. Common methods of inducing
SSVEP include light stimulation, pattern stimulation, as well as pattern reversal stimulation. Light
stimulation generates stable visual stimuli through precisely controlled light sources, thus making it
suitable for experiments that require high signal stability. Pattern stimulation produces SSVEP
through patterns or blocks that flash at a fixed frequency, offering ease of use and a good user
experience, making it the most commonly used method, though signal instability may occur at high
frequencies. Pattern reversal stimulation induces SSVEP by periodically changing the image pattern,
providing a high signal-to-noise ratio and accuracy, making it suitable for tasks requiring high
precision, but it demands greater attention and can induce cognitive load and fatigue in the subject.
Each stimulation method has specific advantages and limitations in different applications, and
selecting the appropriate one can optimize the performance and user experience of SSVEP-BCI
systems.

2.2. The role of SSVEP in cognitive tasks

SSVEP, with its ability to evoke brain responses through visual stimuli at specific frequencies, is
particularly suited for processing visual information within certain frequency ranges, offering
efficient signal processing capabilities and good signal quality. Figure 1 illustrates the multi-channel
EEG waveform of SSVEP, reflecting the brain's electrical response in the visual cortex under visual
stimuli at different frequencies [4]. The amplitude and frequency characteristics of each waveform
demonstrate the spatial and temporal distribution of SSVEP, thus providing theoretical support for
optimizing brain-machine interface systems. The application of SSVEP mainly focuses on two
areas: brain-machine interfaces and cognitive process research. In the context of brain-machine
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interfaces, SSVEP provides a stable signal source for non-invasive control. In cognitive research,
SSVEP has been shown to effectively reflect processes related to visual attention, binocular rivalry,
working memory, and brain rhythms. The response characteristics of SSVEP vary across different
cognitive tasks. For example, in visual attention tasks, low- and mid-frequency SSVEP responses
may reflect different cognitive processing stages. Low-frequency signals may be more sensitive to
lower-level visual information processing, while mid-frequency signals are linked to more complex
attention tasks. In working memory tasks, the stability and precision of SSVEP are crucial, as high-
quality signals offer more stable indicators of cognitive states. Furthermore, SSVEP's application in
clinical neuroscience is expanding, with uses in aging, neurodegenerative diseases, schizophrenia,
ocular diseases, migraines, autism, depression, anxiety, stress, and epilepsy, offering valuable
insights into these conditions.

Figure 1. SSVEP multi-channel EEG waveforms

3. SSVEP-based brain-machine interaction systems

BCIs are widely used in rehabilitation medicine and assistive control, enabling communication for
individuals with motor disabilities by directly reading brain signals. Non-invasive BCIs typically
rely on neuroimaging techniques such as functional magnetic resonance imaging (fMRI), functional
near-infrared spectroscopy (fNIRS), EEG, and magnetoencephalography (MEG), with EEG being
the primary technique used in research due to its high temporal resolution, portability, and low cost
[5-7]. Common BCI signal modalities include P300, SSVEP, and motor imagery (MI). To improve
system accuracy and robustness, multimodal brain-computer interfaces (hybrid BCI, hBCI) have
been increasingly used, combining multiple signal modalities for better performance.

3.1. SSVEP-based multimodal BCI system

SSVEP is the main modality of non-invasive communication rate BCI systems. In order to boost
performance, research has gradually focused on combining SSVEP with signals such as P300, MI,
EOG, and fNIRS, to build multimodal brain-computer interfaces. Figure 2 illustrates the types of
signals used to construct multimodal BCIs [5].
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Figure 2. Signals used to construct multimodal BCIs

3.1.1. The combination of SSVEP and EEG signals

By focusing on periodic visual stimuli, SSVEP is generated, and its integration with other EEG
modalities is realized through the combination of various tasks. For example, tasks independent of
the gaze task, such as MI tasks, enable the fusion of SSVEP and MI, while multisensory stimulation,
like combining visual and auditory stimuli, results in the integration of visually evoked potentials
and auditory evoked potentials (AEP) [8]. Moreover, tasks triggered by visual stimuli, such as P300
signal acquisition, can also be combined with SSVEP. Furthermore, tasks that are causally related to
the gaze task, such as detecting emotional changes or error potentials (ErrP) induced by erroneous
visual feedback during the gaze task, can improve the performance of SSVEP-BCI systems [9,10].
Among these methods, systems that combine SSVEP with MI and P300 are the most extensively
researched and applied, thanks to their high stability and versatility.

3.1.2. The combination of SSVEP and physiological signals

The combination of SSVEP with other physiological activity signals like eye tracking, EOG and
EMG can further improve the performance and pervasiveness of brain-computer interfaces. Eye
tracking, which monitors eye movements to determine the gaze area, can be combined with SSVEP
for more precise target selection. For example, in speller applications, eye tracking is used to select a
target region, while SSVEP is used to select specific targets within the region [11]. EOG signals,
which reflect eye movements like blinking, can be used for basic control commands, such as turning
the system on/off or confirming actions. Systems combining SSVEP and EOG are able to increase
the size of the command set while maintaining a high level of comfort. EMG signals, which record
muscle activity, enable control and, when combined with SSVEP, can optimize control logic. In a
hybrid speller, a fist-clenching action can be used to confirm a choice or execute an auxiliary
operation. These multimodal BCI systems offer more flexible control for users with varying needs,
enhancing both accuracy and comfort.

3.1.3. The combination of SSVEP and brain activity signals

The combination of SSVEP with other brain activity signals aims to improve the accuracy and
functionality of brain-computer interfaces through multimodal neurofunctional imaging. SSVEP is
suitable for combining with other brain imaging techniques such as MEG, fMRI, and fNIRS, due to
its fast response and high amplitude characteristics. MEG offers higher spatial resolution but is
expensive and requires a controlled environment, while fMRI, though providing the highest spatial
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resolution, also comes with high equipment costs and complex data analysis. fNIRS has lower
equipment costs and high portability, making it suitable for use in natural environments. The
combination of these technologies, especially the integration of EEG and fMRI, allows SSVEP to
reduce EEG artifacts caused by MRI gradient coils while maintaining the resolution of fMRI.
Currently, multimodal brain-computer interface research is in its early stages, facing challenges such
as equipment compatibility and signal matching. However, it shows potential for enhancing the
richness and accuracy of brain neural activity information [12].

3.2. Encoding and decoding algorithms for SSVEP-BCI systems

SSVEP has become one of the three main BCI paradigms due to its stable evoked characteristics and
high signal-to-noise ratio [13-15]. In SSVEP-BCI systems, the algorithm is mainly divided into two
parts: encoding transforms feature information into stimuli, and decoding extracts information from
EEG signals for accurate recognition. Researchers have developed decoding algorithms like CCA
and TRCA, driving significant progress in SSVEP-BCI and their widespread use.

3.2.1. SSVEP encoding algorithms

The SSVEP-BCI system mainly use different encoding methods to achieve recognition and control
of commands [16]. Frequency encoding uses flickering blocks with different frequencies to allow
the subject to identify various commands, achieving high classification accuracy and information
transfer rate [17]. Frequency-phase encoding combines frequency and phase information, resolving
the amplitude-frequency issue and improving accuracy. Time-frequency encoding uses time-series
with varied frequencies to reduce subjective fatigue and maintain high classification accuracy [18].
Space-frequency encoding leverages visual spatial information to increase the diversity of encoding
paradigms, enhancing system performance and user experience. Hybrid encoding combines features
like frequency, phase, and space, enhancing classification accuracy and control commands, leading
to higher information transfer rate. The development of these encoding methods offers promising
prospects for high-frequency SSVEP-BCI systems in communication and control applications.

3.2.2. SSVEP decoding algorithms

The decoding algorithm in SSVEP-BCI systems includes power spectral density analysis (PSDA),
least absolute shrinkage and selection operator (LASSO), canonical correlation analysis (CCA),
task-related component analysis (TRCA), discriminative canonical pattern matching (DCPM), and
deep learning methods. PSDA uses Fourier transform to convert EEG signals from the time domain
to the frequency domain, analyzing the amplitude characteristics of target stimulus frequencies for
identification [19]. LASSO uses a penalty parameter for variable selection, shrinking irrelevant
coefficients and extracting important features. CCA studies the correlation between two sets of
variables, identifying the maximum correlation coefficient for classification [20]. TRCA enhances
feature extraction by maximizing inter-trial covariance, thereby improving classification accuracy.
The DCPM algorithm constructs discriminative spatial patterns, eliminating common-mode noise
and is suitable for spatial information classification. Deep learning methods like PNN have also
been applied in EEG signal decoding, although they have not yet shown significant advantages in
high-frequency SSVEP-BCI. The development of these algorithms has improved the classification
accuracy and information transfer rate of high-frequency SSVEP-BCI systems, providing technical
support for practical applications.
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4. Practical applications and challenges of SSVEP-BCI

BCI technology was firstly applied in medical diagnostics and rehabilitation medicine. As research
in cognitive neuroscience has progressed and computer technology has developed, BCI technology
has matured and expanded into new fields. SSVEP-based BCIs, known for their non-invasiveness,
high information transfer rate, and strong classification accuracy, are widely used across various
fields. Below is a detailed discussion of these applications [21-24].

4.1. Medical field

In the medical field, SSVEP-BCI technology is mainly used in rehabilitation medicine and assistive
device control to help patients, especially those with disabilities, stroke patients and other groups, to
achieve interaction with the outside world. By decoding EEG signals, SSVEP-BCI systems can
control external devices, thus improving the quality of life of patients. For instance, Wang et al.
created an assistive communication system using SSVEP signals, significantly enhancing stroke
patients’ communication abilities [25]. In addition, the wearable BCI system designed by Qin Jun
demonstrated the great promise of SSVEP-BCI in patient rehabilitation [26]. Although SSVEP-BCI
has made some progress in the medical field, it still faces many challenges. Firstly, the nonlinearity
and individual variability of EEG signals make decoding accuracy challenging, demanding high
precision for patient rehabilitation. Secondly, ensuring the stability and comfort of the SSVEP-BCI
system during prolonged use, particularly in terms of wearability, remains a challenge. Additionally,
the high cost and usage threshold may hinder the widespread adoption of the technology. In the
future, SSVEP-BCI development in medicine will focus on improving decoding accuracy and
system stability through technologies like deep learning and transfer learning[27]. Asynchronous
BCIs will enable more flexible control, enhancing rehabilitation. Advancements in wearable
technology will make SSVEP-BCIs more convenient, comfortable, and accessible.

4.2. Non-medical field

In the non-medical field, SSVEP-BCI systems are widely used in entertainment, industrial, military,
and other sectors. For example, in the entertainment industry, SSVEP-BCI can be used in virtual
reality games and augmented reality systems to provide an immersive experience by controlling the
movements of game characters or virtual objects through EEG signals. In industry, SSVEP-BCI can
control robots and equipment, boosting efficiency and safety. In the military, its applications include
controlling tasks in complex environments, such as asynchronous brain-controlled vehicles, thereby
highlighting its potential for autonomous driving and unmanned systems [28]. Despite its great
potential in non-medical fields, SSVEP-BCI still encounters challenges in practical applications.
Firstly, EEG signal decoding delays may affect the system’s high real-time requirements,
particularly in games, virtual reality, or autonomous driving, impacting user experience and safety.
Secondly, the device’s portability and comfort pose limitations, especially for long-term wear.
Additionally, the system’s reliability and stability need further optimization to ensure consistent
performance in dynamic and complex environments. In the future, the development of SSVEP-BCI
in non-medical fields will focus on improving system real-time performance and interactivity. By
optimizing decoding algorithms and enhancing processing speed, low-latency, precise control can be
achieved. Moreover, with advances in hardware technology, portable devices and non-invasive EEG
signal acquisition will expand the application of SSVEP-BCI in broader scenarios. Hybrid BCI
systems, combining SSVEP-BCI with other technologies, will become a key trend to meet complex
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application demands, especially in high-precision tasks such as autonomous driving and intelligent
manufacturing.

5. Conclusion

This paper discusses the relationship between SSVEP and brain function, the generation mechanism
of the SSVEP-BCI system and its application in cognitive tasks. By analyzing the coding and
decoding algorithms of the SSVEP-BCI system, its extensive applications in both medical and non-
medical fields are highlighted. Despite the remarkable progress of SSVEP-BCI technology, it still
faces challenges such as nonlinearity and nonstationarity of EEG signals, individual variability, and
limitations of system portability and interactive naturalness. Future SSVEP-BCI development will
prioritize portability, flexible interaction, and robust, efficient, adaptable decoding algorithms. In
addition, in-depth exploration of the combination of asynchronous BCI systems, multimodal BCI
systems, and the use of new techniques like deep learning and migration learning will be a crucial
development direction for SSVEP-BCI systems. This paper may provide theoretical foundations and
practical guidance for the further development of SSVEP-BCI technology, with the potential to
bring new breakthroughs in neuroscience, rehabilitation medicine, and human-computer interaction.
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