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Abstract. Traditional sensorless control methods suffer from performance degradation at low
speeds and under parameter variations. The introduction of sliding mode control effectively
addresses this issue. In this paper, a mathematical model of the PMSM is first established,
and an improved sliding mode observer is designed. Through robust analysis of key motor
parameters such as stator resistance, inductance changes, and flux linkage deviation, it is
found that sliding mode control exhibits strong disturbance rejection capability against
resistance changes, moderate robustness against inductance changes, while flux linkage
deviation significantly affects system accuracy. Experimental results demonstrate that the
sliding mode control scheme exhibits significant advantages over traditional methods in
terms of low-speed observation accuracy, dynamic response speed, and system overshoot
control. The feasibility of this control method in industrial applications is validated through
experiments, particularly under high-load conditions, where it demonstrates good
robustness.
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1. Introduction

In the contemporary industrial technology ecosystem, permanent magnet synchronous motors
(PMSM) serve as the core device for power conversion and are widely integrated in high reliability
scenarios such as aerospace [1]. However, the performance degradation during low-speed operation
exposes potential flaws in the algorithm model [2]. In addition, when the operating parameters of the
system exceed the steady-state range preset by the model, the efficiency of the estimation algorithm
based on ideal assumptions deteriorates in the robustness dimension, indicating the urgent need to
establish a more inclusive control theory framework [3]. The introduction of sliding mode control
(SMC) marks a shift in control theory from the asymptotic stability paradigm to the finite time
convergence paradigm. However, the technological potential of this control paradigm is still limited
by specific constraints at the physical implementation level [4]. The engineering practice of early
sliding mode observers has shown that the existence of high-frequency chattering phenomenon
reveals a mismatch between theoretical models and physical implementations [5], and the trade-off
effect between estimation accuracy and system stability is common [6]. The proposal of high-order
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sliding mode observer and super spiral sliding mode control [7] can be seen as a progressive
correction to this technical paradox.

However, current research mostly focuses on local optimization under specific parameters,
lacking comprehensive analysis of the overall system performance under multiple parameter
variations [8]. Therefore, how to optimize dynamic response and high-frequency pulsation
suppression through robust design of the system remains an unsolved problem in current PMSM
sensorless control technology. Based on this, this article proposes an improved sliding mode
observer that effectively improves the accuracy under low speed and high load conditions; An in-
depth analysis was conducted on the impact of resistance, inductance, and magnetic flux deviation
on system performance, revealing that magnetic flux deviation is the core bottleneck of system
accuracy; Designed an efficient robustness mechanism to solve the performance degradation
problem of traditional control methods under parameter changes.

2. Research design

2.1. Model establishment

Accurate mathematical models are the foundation for designing high-performance sensorless control
algorithms. This section establishes its mathematical model in the stationary reference frame of α - β
and explicitly expresses the relationship between key electrical variables and rotor position and
velocity [9].

The specific process is detailed in Appendix A. The Stator Voltage Equations in α - β Frame are
constructed as follows:

(1)

Among them, A is a term related to inductance and positionl; Ls(αβ) is the equivalent inductance
matrix in the αβ coordinate system; Δ represents disturbances not included in the model.

2.2. Observer design

This section designs an improved sliding mode observer structure based on the PMSM mathematical
model established in the previous section.

From equation (1):

(2)

Among them, eα and eβ are the back electromotive force components that need to be observed.
Design a sliding mode observer as follows:

(3)

Among them, îα, îβ: The stator current components of the α and β axes estimated by the observer;
êα, êβ: The initial estimated or set back electromotive force term within the observer; zα, zβ: Key
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design term - sliding mode variable structure control term, designed in the form of a switching
function, used to drive observation error convergence and approximate the actual back electromotive
force.

Choose sliding surface s:

(4)

The physical meaning of the sliding surface is the state plane where the current estimation error is
zero. The objective of the observer is to make the system state (îα, îβ) reach and maintain motion on
the sliding surface s=0 within a finite time.

Stability analysis can be found in Appendix B.

2.3. Theoretical analysis of robustness of key motor parameters

Sliding mode control endows the permanent magnet synchronous motor with excellent disturbance
rejection capability for the sensorless system [10], but the robustness levels for different parameters
are distinct. The system exhibits the strongest inherent tolerance to changes in stator resistance, and
an increase in its value actually enhances damping and accelerates convergence in the observer, with
little impact on controller speed tracking; The robustness to changes in the inductance of the
orthogonal axis is moderate, and the inductance changes mainly affect the transient convergence
speed and accuracy of the observer. However, after entering sliding mode motion, the core
disturbance can be effectively suppressed, and the dynamic impact on the controller is limited;
However, the magnetic flux of permanent magnets is a key bottleneck that determines system
accuracy. Its decrease under extreme conditions may threaten the stability of the observer, but
theoretically does not affect the correctness of its position and phase estimation. The real core
challenge lies in the fact that any deviation between the actual value of the magnetic flux and the
preset value of the internal model of the controller will result in an electromagnetic torque model
mismatch that cannot be completely eliminated by sliding mode robustness and is proportional to
the degree of error. This will inevitably introduce residual systemic steady-state tracking errors in
the speed loop, becoming the fundamental bottleneck factor that restricts the maximum accuracy
limit of the system. The "matching" robust mechanism of sliding mode can effectively handle
resistance, inductance, and conventional disturbances, but it is powerless against the fixed magnetic
flux parameter errors in the controller model.

3. Simulation and experimental verification

3.1. Parameter settings

The key parameters related to PMSM experiments can be found in Appendix C.

3.2. Dynamic performance testing

This section focuses on the dynamic performance differences of the sliding mode control sensorless
scheme (SMO+SMC) compared to the benchmark method (PI observer+PI controller) [11]. The key
observation indicators for dynamic performance testing include low-speed steady-state position
estimation error RMS, speed step adjustment time, speed step overshoot, load jump recovery time,
and steady-state position estimation error (mean). The specific results are shown in Table 1.

s = [ ]T = [ ]
T

= 0sα sβ ĩα ĩβ
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Table 1. Dynamic performance test

Key Metrics Conditions Baseline
Method

This Paper's
Scheme

Performance
Improvement

1. Position Error RMS @
Low Speed 100 rpm, no-load steady state 3.0 1.5 -50%

2. Settling Time for Speed
Step 500 rpm → 1500 rpm, no-load 0.25 s 0.18 s -28%

3. Speed Overshoot 500 rpm → 1500 rpm, no-load 12.5% 5.5% -56%
4. Recovery Time to ±2%

Band
1500 rpm, load step: 0 → 100%

rated torque 0.30 s 0.20 s -33%

5. Steady-State Position
Error (Mean) 1500 rpm, 100% load steady state -0.8° -0.3° Decrease in

deviation

This scheme demonstrates significant and reliable performance advantages in low-speed
observation accuracy (-50%), dynamic response speed (-28%), suppression of system overshoot
(-56%), enhancement of load mutation recovery capability (-33%), and reduction of steady-state
position estimation bias.

Among them, the specific situation of the position estimation error in this article's scheme is
shown in Figure 1. The temporal data of position error indicates that the system has achieved high-
precision and low-noise position estimation. This meets the stringent requirements of industrial
grade servo drives for position observation accuracy, providing a feasible engineering solution for
high-speed and high-precision sensorless control.

Figure 1. Time series data of position estimation error

3.3. Parameter robustness analysis experiment

To rigorously verify the dynamic robustness of the sliding mode sensorless control system to
changes in key motor parameters. The experimental design is based on theoretical analysis
conclusions, focusing on three types of parameters: resistance Rs, inductance Ld/Lq, and magnetic
flux ψf. As shown in Table 2.
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Table 2. Parameter settings and operating condition combinations

Module
Key

Configurati
on Items

Specific Settings Physical Meaning/Test Objective

Test
Parameter
Selection

Stator
Resistance

(Rs)

• Reference value: 1.8 Ω• Disturbance
setting: +50% (→ 2.7 Ω)

Simulate the resistance temperature rise effect
under high-temperature conditions, and verify the
system's robustness against ohmic loss variations.

Direct-axis
Inductance

(Ld)

• Reference value: 8.5 mH• Disturbance
settings: +30% (→ 11.05 mH), -30% (→

5.95 mH)

Simulate magnetic saturation and deep magnetic
saturation, and evaluate the impact of inductance

nonlinearity on the observer's dynamics.
Quadrature-

axis
Inductance

(Lq)

• Reference value: 12.0 mH• Disturbance
settings: +30% (→ 15.6 mH), -30% (→

8.4 mH)

Verify the influence of quadrature-axis inductance
variations on the observation accuracy of salient-

pole motors.

Magnetic
Flux (ψf)

• Reference value: 0.15 Wb• Disturbance
settings: -15% (→ 0.1275 Wb), -10%
(→ 0.135 Wb), +10% (→ 0.165 Wb)

Simulate high-temperature demagnetization and
calibration errors, and quantify the sensitivity

boundary to speed steady-state accuracy.
Test

Condition
Combinati

ons

Operating
Point -

Steady State

① Low speed light load: 200 rpm + 0%
load② High speed heavy load: 3000 rpm

+ 100% load

Cover the full speed range and load scope to verify
parameter sensitivity under extreme conditions.

Dynamic
Excitation

③ Speed step: 500 rpm → 2000 rpm
(no-load)④ Load step: 0% → 100%

rated torque step at 1500 rpm

Excitate the coupling effect between parameter
deviations and dynamic response.

The experimental results of parameter robustness analysis are shown in Appendix D.
The sliding mode sensorless control system exhibits significant hierarchical robustness

characteristics when dealing with parameter perturbations. Resistance changes have a weak impact
on system performance. The increase in position error is only 5.3% to 3.6%, and the increase in
current THD is less than 0.7%, which confirms the inherent robustness of the sliding mode observer
to matching disturbances and meets the requirements of industrial temperature rise conditions.
Inductive changes induce controllable performance degradation. The increase in position error by
18-30% is due to the mismatch of the inductance model, which destroys the sliding mode equivalent
condition. However, the system stability can still be maintained through gain margin design,
especially when the error amplification converges to within 20% under high-speed conditions,
confirming its engineering tolerance for magnetic saturation effects. Magnetic flux deviation (ψ f)
exposes the core bottleneck of the system. The decrease of 10% caused a sudden increase of 200-
300% in steady-state speed error and a 140% increase in speed deviation during sudden load
changes. Sensitivity ranking: ψf≫ Lq ≈ Ld>Rs, verifying that the calibration accuracy of ψ f is the
determining factor of system performance.

Furthermore, under the high-speed heavy-duty condition of @ 3000rpm+100% load, the steady-
state deviation of speed is shown in Figure 2. The differences in sensitivity of each parameter are
more significant.
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Figure 2. Statistics of steady state deviation of speed

4. Conclusion

This study significantly improved the robustness of PMSM in sensorless control by introducing
SMC method, especially under low-speed, load variation, and disturbance of key motor parameters,
demonstrating excellent control effects. Through detailed robustness analysis of resistance,
inductance, and magnetic flux deviation, this article confirms the decisive impact of magnetic flux
deviation on system accuracy. However, the existence of magnetic flux error remains the main
bottleneck in improving system accuracy, and future research can further explore how to reduce the
impact of magnetic flux deviation by optimizing control algorithms or combining other estimation
methods. Sliding mode control has broad application prospects in complex working environments,
especially when combined with artificial intelligence and adaptive control technology, it is expected
to achieve more accurate motor control systems.
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Appendix

Appendix A

Neglecting the iron core loss and assuming that the three-phase windings are symmetrical and the
magnetic field of the rotor permanent magnet is distributed sinusoidally in the air gap, the stator
voltage equation of PMSM in the α - β stationary coordinate system can be expressed as:

 (A.1)

Among them, vα and vβ are the stator voltage components (V) of the α and β axes; The stator
current components (A) of the α and β axes are represented by iα and iβ; Rs is the stator phase
resistance (Ω); λα, λβ are the total stator magnetic flux components (Wb) of the α and β axes.

The total stator magnetic flux is generated by the combined action of armature reaction magnetic
flux and permanent magnet excitation magnetic flux:

 (A.2)

For surface mounted permanent magnet synchronous motors, the inductance matrix is usually
isotropic (Ld = Lq = Ls), and in the stationary coordinate system, the inductance matrix can be
approximated as a diagonal matrix:

 (A.3)

For built-in permanent magnet synchronous motors, due to the convex polarity of the magnetic
circuit (Ld≠Lq), the inductance matrix is related to the rotor position angle θr. Its transformation
relationship is more complex, usually expressed as:

 (A.4)

Among them, Ld and Lq are synchronous inductors (H) for the d-axis and q-axis axes; The
amplitude of the permanent magnet magnetic flux (Wb) is represented by ψfw;θr is the mechanical
position angle of the rotor (rad).

Expanding the magnetic flux derivative term in equation (A.1) yields:
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 (A.5)

If the back electromotive force vector e=[eα, eβ]^T is defined as the induced electromotive force
generated by the rotation of the permanent magnet magnetic flux, then:

 (A.6)

Among them, eα, eβ: the back electromotive force components of the α and β axes (V); ωe: rotor
electrical angular velocity (rad/s), the relationship with mechanical angular velocity ωr is ωe=p * ωr,
where p is the number of motor poles; The key factors that make up the back electromotive force are
ψf and ωe.

Substitute equations (A.5) and (A.6) into equation (A.1) and reorganize them to represent them in
a more general form:

 (A.7)

Appendix B

Define the current estimation error vector:

 (B.1)

Derive the error and substitute the actual system equation (2) and observer equation (3) into:

(B.2)

 (B.3)

The sliding mode variable structure control law z is designed as follows:
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 (B.4)

To suppress Chattering, Saturation Function is used instead of Sign Function, and Boundary
Layer is introduced:

 (B.5)

Among them, Ksmo>0: Gain coefficient of sliding mode observer; Φ>0: Boundary layer thickness.
Prove the convergence of the designed SMO using the Lyapunov second method. Construct

candidate Lyapunov functions:

 (B.6)

Derive V:

 (B.7)

Substitute into the error dynamic equation (B.3):

 (B.8)

Among them, Δeα=êα-eα, Δeβ=êβ-eβ represents the estimation error of back electromotive force. In
the initial design phase (with internal ê set to 0), Δe=-e. Consider sliding mode control law (B.5)
(z=ksmo*sat(ĩ/Φ)), and assume that the back electromotive force is bounded (| eα |, | eβ | ≤ Em),
parameter resistance Rs>0, inductance Ls>0:

 (B.9)
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(B.10)

In order to satisfy V̇<0 (ensuring convergence to the boundary layer or sliding surface), the gain
ksmo needs to be designed to satisfy:

 (B.11)

The maximum possible amplitude of the actual back electromotive force is determined by the
motor magnetic flux and the maximum operating speed, where Em is the maximum possible
amplitude of the back electromotive force (Em≈ ψf*ω{e,max}).

For the case of | ĩα | ≤Φ, | ĩβ | ≤Φ (sat (ĩα/Φ)=ĩα/Φ), the analysis is relatively complex, and it is
generally believed that the system can work stably in the boundary layer.

By selecting a sufficiently large sliding mode gain ksmo>2Em, it can be ensured that V̇<0 holds
outside the boundary layer, that is, the observation errors ĩα and ĩβ will converge to the interior or
vicinity of the boundary layer | ĩ | ≤Φ within a finite time, thereby ensuring the effectiveness of the
back electromotive force estimation.

ksmo > 2Em
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Appendix C

Table 1. Key parameters table

Category Specific Item Parameter/Specification/Model

PMSM Motor Model 750W, 4-pole IPMSM

Rated Power 750 W

Rated Speed 3000 rpm

Rated Torque 2.39 Nm

Stator Resistance (Rs) 1.8 Ω

Direct-axis Inductance (Ld) 8.5 mH

Quadrature-axis Inductance (Lq) 12.0 mH

Permanent Magnet Flux Linkage
(ψf)

0.15 Wb

Number of Pole Pairs (P) 2

Simulation Platform Software Environment MATLAB/Simulink R2023b, PLECS Blockset 4.6

Simulation Step Size 5 μs

Experimental Platform Controller Hardware Texas Instruments TMS320F28379D Dual-Core Delfino DSC

Power Driver Three-phase Full-bridge IGBT Inverter (1200V, 25A)

Voltage/Current Sensors LEM LV 25-P (Voltage), LEM LA 55-P

Position/Speed Reference Sensor 2500-line Incremental Optical Encoder

Load Device Magnetic Powder Brake + Torque Sensor

DC Power Supply 300V DC Regulated Power Supply

Control Algorithm
Parameters PWM Switching Frequency 10 kHz

Current Sampling Frequency 10 kHz (Synchronized PWM Midpoint Sampling)

Speed Control Frequency 1 kHz

SMO Parameters Sliding Mode Gain (ksmo) 20

Boundary Layer Thickness (Φ) 0.5 A

Back-EMF LPF Cutoff Frequency 500 Hz

PLL Parameters P Gain (Kp_pll) 150 rad/(s·rad)

I Gain (Ki_pll) 5000 rad/(s²·rad)

SMC Parameters Sliding Surface Coefficient (λ) 50 rad/s

Switching Gain (K_sw) 15 A/(rad/s)

Boundary Layer Thickness (Φ_ω) 10 rpm

Baseline Controller
Parameters

PI Speed Controller Parameters (KP,
KI) KP = 0.05 A/(rad/s), KI = 0.5 A/(rad·s)

PI Current Controller Parameters
(αβ-axis)

KP = 1.0 Ω, KI = 3000 rad/s

Subsequent Test
Conditions Speed Range Low Speed: 100 rpm, Medium Speed: 1500 rpm, High Speed:

3000 rpm

Speed Step 500 rpm → 1500 rpm (Rated)

Load Step No Load → 100% Rated Torque

Parameter Robustness Test Rs Variation: +50%, Ld/Lq Variation: +30%, -30%, ψf Variation:
±15%, ±10%
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Appendix D

Table 2. Experimental results of parameter robustness analysis

Parameter
Perturbation  

Operating
Condition  

Position Error
RMS (deg)  

  Error
Increase  

Speed Steady-State
Error (rpm)  

Error
Increase  

Current
THD (%)    Key Conclusion  

  Nominal
Parameters  

200rpm + 0%
Load

1.50 – 0.5 – 4.5 Baseline

(Rs =1.8Ω, Ld 
=8.5mH,

3000rpm +
100% Load 0.55 – 5.0 – 5.8

Lq =12mH, ψf 
=0.15Wb)

1500rpm +
Load Step* 0.80 – – – –

  Rs  +50%  200rpm + 0%
Load 1.58   +5.3%  0.6 +20%   5.1  Minor impact

(→2.7Ω) 3000rpm +
100% Load

0.57 +3.6% 5.3 +6%   6.2  

  Ld  –30%  200rpm + 0%
Load   1.95    +30.0%  0.7 +40% 4.7 Transient

degradation

(→5.95mH) 3000rpm +
100% Load   0.70    +27.3%  5.9 +18% 6.0

  Lq  +30%  200rpm + 0%
Load   1.80    +20.0%  0.6 +20% 4.6 Increased position

jitter

(→15.6mH)
3000rpm +
100% Load   0.65    +18.2%  5.7 +14% 5.9

  ψf  –10%  200rpm + 0%
Load

1.55 +3.3%   2.0    +300%  4.6   Speed accuracy
bottleneck  

(→0.135Wb) 3000rpm +
100% Load 0.58 +5.5%   15.0    +200%  5.9

1500rpm +
Load Step* 0.85 +6.3%   12.0    +140%  –

  ψf  –15%  200rpm + 0%
Load 1.60 +6.7%   3.5    +600%  4.7   Critical speed

drift  

(→0.1275Wb)
3000rpm +
100% Load 0.60 +9.1%   24.0    +380%  6.1

1500rpm +
Load Step* 0.88 +10.0%   18.0    +170%  –

  ψf  +10%  200rpm + 0%
Load 1.52 +1.3%   -1.8    -460%  4.4 Overcompensatio

n

(→0.165Wb) 3000rpm +
100% Load 0.56 +1.8%   -8.0    -260%  5.7


