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Cardiac magnetic resonance imaging (Cardiac MRI) is an important noninvasive
tool for evaluating cardiac structure and function, but its spatial resolution and temporal
consistency are often limited by imaging equipment, which affects the accurate portrayal of
complex cardiac dynamics. Existing methods mostly regard image reconstruction and
functional assessment as independent tasks, failing to establish a causal link between
structure and function, resulting in inefficient information utilization and unstable prediction
accuracy. To solve the above problems, this paper proposes a causality-aware multitask
diffusion model, which embeds causal reasoning mechanism into the diffusion denoising
process to realize the joint assessment of super-resolution reconstruction of cardiac MRI
images and functional indexes such as ejection fraction and ventricular volume. The model
architecture includes a causal encoder, a multi-task diffusion network and a joint decoder,
and the causal consistency loss is introduced during the training process to constrain the
structure-function dynamic association. Experiments are conducted on multiple cardiac MRI
public datasets, and the results show that the model outperforms existing methods in PSNR,
SSIM, temporal consistency, and functional prediction error, and has stronger
interpretability and clinical potential. This study provides new ideas for building an

interpretable medical Al system that integrates image quality and functional reasoning.
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Cardiac MRI as an important tool for noninvasive detection of structural and functional changes in
the heart, has a spatial and temporal resolution that directly determines the ability to characterize
complex cardiac dynamics. Due to the acquisition rate and motion artifacts of imaging devices, the
original images often suffer from spatial blurring and insufficient temporal sampling, which affects
the accuracy of subsequent cardiac function assessment [1]. Current studies mostly treat image
reconstruction and functional assessment as two independent tasks, and lack systematic modeling of
the potential causal structure between them, resulting in insufficient utilization of information and
weak predictive stability. In recent years, diffusion models have shown excellent performance in
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high-quality image generation, but their application in dynamic sequence modeling and medical
functional prediction is still in the preliminary exploration stage [2]. In this paper, we address this
research gap and propose a multi-task diffusion model incorporating causal modeling mechanisms to
jointly achieve super-resolution reconstruction of dynamic cardiac MRI images and prediction of
cardiac function parameters, in order to enhance the automation level and diagnostic value of
clinical data parsing.

2. Literature review
2.1. Super-resolution techniques in dynamic cardiac MRI

Existing cardiac MRI super-resolution reconstruction methods are mainly based on deep
convolutional networks (CNN), generative adversarial networks (GAN), and the recently emerging
Transformer structure, which seek to recover high-quality images by capturing spatially localized
details in relation to temporal context [3]. However, CNN structures have limited ability to model
long-range dependencies and are prone to local enhancement of dynamic information with global
blurring. GANs, despite their excellent performance in texture details, are unstable in maintaining
anatomical structure consistency [4]. And Transformer, although capable of modeling time series
variations on a large scale, is extremely demanding in terms of data volume and training resources,
and fails to effectively constrain the physiological regularity of cardiac motion.

2.2. Functional assessment from medical imaging

Functional assessment methods usually rely on anatomical structures extracted after segmentation or
directly predict key physiological metrics through time-series regression. Most of the early studies
used U-Net or 3D convolutional networks for structure extraction, followed by physiological
parameter computation with the help of statistical analysis or simple regression modeling, which is
difficult to adapt to complex movement patterns and nonlinear physiological variability [5]. In
recent years, the introduction of graph convolutional networks and attention mechanisms has
alleviated the structure-function decoupling problem to a certain extent, but most of the models still
regard the functional evaluation as an additional task after image processing, failing to establish a
causal chain from image dynamic generation to physiological state prediction [6].

2.3. Causal and diffusion models in image processing

Diffusion models have excelled in high-quality image generation, restoration and interpolation tasks
in recent years, and their gradual process of learning data distributions through forward noise
addition and backward denoising provides a unique advantage in maintaining detail realism and
structural consistency [7]. However, the standard diffusion process lacks the ability to express
structural constraints among variables when modeling dynamic sequences or multitasking scenarios,
making it difficult to capture deep functional-structural interactions. Meanwhile, by constructing
causal maps between variables, intervention paths and inference mechanisms can be effectively
identified [8]. Although causal modeling is mostly applied to phenotyping or disease prediction
tasks and has not yet been mechanistically integrated within generative models, the two are highly
complementary in terms of image representation and inference accuracy.
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3. Methodology
3.1. Datasets and preprocessing

This study constructed a comprehensive cardiac MRI dataset by integrating multiple public data
sources to ensure the generalization capability of the model [9]. As shown in table 1 .The dataset
includes cardiac MRI sequences with various acquisition protocols, pathological states, and
population characteristics, providing sufficient sample diversity for causality-aware modeling.

Table 1. Data types and content

. Sample Spatial Temporal
Data Type Description Size Source Resolution Resolution
Normal Cine MRI Dynamic cardiac images of 1,200 UK Biobank 1.8x1.8x8mm 25 frames/cardiac
healthy subjects cases 3 cycle
Myocardial Acute/chronic myocardial 200 cases MICCAI 1.5%1.5x10m 20 frames/cardiac
Infarction MRI infarction images Challenge m? cycle
Cardiomyopathy Dilated/hypertrophic Cardiac Atlas  1.2x1.2x8mm 30 frames/cardiac
. 600 cases .
MRI cardiomyopathy cases Project 3 cycle
Low-res Simulated Downsampled from high- 2,400  Generated in this 3.6x3.6x8mm 25 frames/cardiac
Data resolution MRI cases study 3 cycle

The data preprocessing adopted a deep learning-based cardiac segmentation algorithm to
accurately locate the left ventricle, ensuring anatomical consistency for subsequent analysis.
Temporal registration techniques were used to eliminate the effects of respiratory motion and
arrhythmia on image sequences, establishing a stable spatiotemporal correspondence. Intensity
normalization employed quantile normalization to maintain signal consistency under different
scanning parameters.

3.2. Model architecture

The model architecture is based on a modified DDPM framework that achieves cross-task
collaborative optimization by introducing causal inference mechanisms. The overall architecture
consists of three core modules which are causal encoder multitask diffusion network and joint
decoder [10]. The causal encoder constructs causal relationships between cardiac structure and
function through a graph neural network.

The causal relationship is modeled by the following equation:

Gcausal:fencoder (Xaeenc)zziTzlz;rzlaij'ReLU (Wc [Xi;xj]+bc) (1)

Where a;; denotes the causal weight between time steps 1 and j and W, and bc are the

learnable weight matrix and bias vector respectively.

The forward process of the multitask diffusion network follows an improved noise scheduling
strategy that considers the periodic characteristics of cardiac motion. The objective function of the
denoising process combines super-resolution loss and functional assessment loss:

gdiffusion:Exo,t,e |:H€ —€y (Xt7taGcausaI) H 2] +>‘°gfunction (f9 (XO)7qunc) (2)
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Where €, is the predicted noise -Z’function 1S the functional assessment loss A is the balancing

parameter and yg,,. 1S the ground truth of the functional assessment.
3.3. Training procedure and evaluation metrics

This study introduced a hierarchical loss system that enables coordinated enhancement between
super-resolution and functional assessment through multi-level constraints. An alternating training
strategy was employed where the super-resolution branch is optimized first, followed by the
functional assessment branch based on the reconstructed outputs, and finally the entire network is
updated [11]. The total loss function includes several components. Reconstruction loss combines L1
norm and structural similarity to ensure pixel accuracy and structural consistency. Perceptual loss
uses a pretrained VGG network to extract high-level semantic features and enhance visual quality.
Functional assessment loss targets key indicators like ejection fraction using a mix of regression and
classification approaches. The causal consistency loss, as the core innovation of this study, uses KL
divergence between causal graphs at different time steps to constrain graph stability and ensure
physiological plausibility and model interpretability.

4. Results
4.1. Image reconstruction performance

On the UK Biobank normal cardiac MRI dataset the model achieved a PSNR of 34.2 dB an
improvement of 5.1 dB over the traditional SRCNN method of 29.1 dB and 1.4 dB higher than the
recent best-performing SwinlR method of 32.8 dB. In terms of SSIM the model achieved an
excellent performance of 0.941 significantly surpassing EDSR’s 0.892 and RealESRGAN’s 0.908
fully demonstrating the effectiveness of the causal constraint mechanism in maintaining structural
integrity. On the myocardial infarction dataset the model achieved a PSNR of 33.6 dB and an SSIM
of 0.936 showing clear advantages over baseline methods in terms of pathological boundary clarity
and texture detail preservation. Especially in areas with ventricular wall motion abnormalities the
model more accurately restored tissue contrast and continuity of motion trajectory verifying the
robustness of the multitask framework in complex pathological scenarios. Temporal consistency was
quantified by the gradient difference between consecutive frames and the model achieved a TCI of
0.89 significantly better than the 0.76 of single-task reconstruction methods effectively resolving the
discontinuity issue in dynamic sequence reconstruction.

4.2. Functional metric estimation accuracy

In ejection fraction prediction the model achieved an MAE of 2.1 percent which is 44.7 percent and
50.0 percent lower than the independent functional assessment network ResNet-3D at 3.8 percent
and traditional segmentation-based methods at 4.2 percent respectively. The Pearson correlation
coefficient reached 0.952 significantly higher than the comparative methods at 0.891 and 0.876
indicating a stronger linear correlation between the model and expert annotations. In ventricular
volume prediction tasks the prediction error for LVEDV was reduced to 8.3 ml a 34.6 percent
reduction compared to 12.7 ml from the baseline method. The LVESV prediction error was 5.9 ml a
29.8 percent reduction compared to 8.4 ml from the baseline. ROC analysis showed that the model
achieved an AUC of 0.963 for detecting functional abnormalities with sensitivity and specificity of
91.2 percent and 94.7 percent respectively demonstrating significant advantages over segmentation-
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only methods. Cross-validation results indicated stable generalization performance across different
pathological types verifying the effectiveness of causal modeling in capturing cardiac functional
patterns under different disease states.

4.3. Ablation studies

Five sets of ablation experiments were designed to validate the independent contributions of each
model component. As the results in Fig. 1 show, the full model performs optimally in terms of image
quality and functional prediction. Removing the causal loss function significantly reduces structure-
function consistency, with PSNR decreasing to 32.7 dB and MAE increasing to 2.8%. Removing the
multitask branch slightly improves the PSNR to 34.5 dB, but the functional evaluation capability is
completely lost, validating the necessity of a joint learning architecture. The overall performance of
the model decreases significantly after removing the causal encoder, with PSNR dropping to 31.4
dB and MAE rising to 3.2%. Statistical analysis shows that the causal loss function, multi-task
architecture and causal encoder have key roles in functional prediction, image reconstruction and
temporal consistency, respectively.
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Figure 1. Ablation study results comparison

5. Discussion

This study realizes the effective coupling of causal modeling mechanism and diffusion model
architecture, in a multi-task learning framework, which breaks through the limitation of the
traditional cardiac MRI image reconstruction and functional assessment split processing.
Experimental results show that causal constraints help maintain the structural rationality and
dynamic consistency of the reconstructed images, while enhancing the physiological explanatory
power of functional index prediction. In particular, it shows good robustness in ventricular wall
motion abnormalities and different pathology types. Compared with the task-independent model, the
method achieves parallel optimization of clinical functional reasoning while ensuring image quality,
and strengthens the synergy between data-driven models and physiological mechanisms.
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6. Conclusion

The causality-aware multi-task diffusion model proposed in this paper effectively coordinates the
spatial details of image reconstruction with the predictive consistency of physiological parameters
by introducing a structured causality modeling mechanism, achieving the goal of extracting high-
value diagnostic information from low-quality imaging data. Systematic evaluation shows that the
method significantly outperforms existing methods in terms of image quality, prediction accuracy
and temporal consistency, and has good generalization ability and clinical usability. This study
provides an interpretable and extensible modeling paradigm for clinical Al systems, which is
expected to play a key role in future medical image intelligent processing and personalized assisted
diagnosis.
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