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The Michaelis constant (K, ) is a key parameter that describes the binding affinity
between an enzyme and its substrate. However, experimentally determining the K _ value is
both difficult and time-consuming. Therefore, developing a deep learning-based method to
predict enzyme K _ values is of great significance. In this study, we constructed a deep
learning model capable of extracting three-dimensional structural information from protein
and substrate structural files. The model leverages a graph neural network to deeply process
this information, thereby enabling accurate prediction of enzyme K_ values. The model
achieved an R? value of 0.453 on the SABIO-RK dataset, outperforming the model proposed
by Kroll A et al., and demonstrating superior accuracy and generalization capability. This
research not only showcases the great potential of deep learning in structure-based
prediction of enzyme K values, but also provides new perspectives and methodologies for
advancing this field.

Michaelis constant, deep learning, structure-based prediction

The Michaelis constant (K, ) refers to the substrate concentration at which an enzyme-catalyzed
reaction proceeds at half of its maximum rate. It reflects the affinity between an enzyme and its
substrate and has significant implications for catalytic efficiency and substrate specificity.
Accurately determining the K value of an enzyme is essential for understanding its biochemical
properties and for optimizing bioprocesses. However, experimental measurement of enzyme K
values is both challenging and time-consuming. As a result, current biological databases contain
only a limited number of experimentally determined K values. Therefore, developing a fast and
accurate method for predicting enzyme K values is of great importance.

With the advancement of computational technology, researchers have begun to explore the use of
computer-based methods to predict enzymatic kinetic parameters. Borger et al [1]. demonstrated that
statistical approaches can be applied to predict enzyme kinetic properties. Heckmann et al [2].
successfully used machine learning techniques to predict the catalytic constants of enzymes in
Escherichia coli. More recently, Kroll et al [3]. combined deep learning and machine learning
methods to achieve efficient prediction of enzyme K values. They represented protein sequences
using UniRep vectors [4], integrated these with molecular fingerprints of substrates, and trained an
Extreme Gradient Boosting (XGBoost) model [5], achieving significant improvements in prediction
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accuracy. This work has provided valuable insights and guidance for subsequent studies. Han et al
[6]. developed UniKP, a framework for predicting enzymatic kinetic parameters based on pretrained
language models. UniKP effectively integrates the protein language model ProT5-XL-UniRef50 [7]
with the substrate language model SMILES Transformer [8], leveraging the powerful capabilities of
deep learning to achieve precise predictions. The predictive performance of UniKP on K values
was comparable to that of Kroll et al., demonstrating high accuracy.

Although the above methods have achieved excellent performance in predicting enzyme kinetic
parameters, they generally rely on inferring three-dimensional structural information from protein
sequences. However, directly using the enzyme’s structural data to extract its 3D information is not
only more straightforward but also potentially more accurate. This is because enzyme-substrate
interactions primarily occur within the catalytic domain—this domain is not only a critical structural
component of enzymes and determinant of substrate specificity, but also has a direct impact on K _
values. By focusing on the features of the catalytic domain when predicting K values, it is possible
to reduce the “noise” introduced by non-essential regions of the enzyme, thereby improving
prediction accuracy.

To accurately identify catalytic domains, molecular docking methods are typically used to
simulate interactions between enzymes and substrates and to obtain the structure of enzyme-
substrate complexes [9—10]. Based on this principle, this study proposes a deep learning method for
structure-based prediction of enzyme K values. The model takes the structural files of enzymes and
substrates as input. It can either utilize the entire enzyme structure in combination with substrate
features to predict K values, or focus specifically on the catalytic domain and substrate features for
prediction.

To predict enzyme K values, it is necessary to collect data related to K values as well as the three-
dimensional structures of enzymes and substrates. In this study, relevant information was carefully
selected and integrated from multiple authoritative databases. The specific steps are as follows:

1) Comprehensive Retrieval of Enzyme Information: Using the Python programming language
[11], enzyme-related data were retrieved from the BRENDA [12-13] and SABIO-RK [14]
databases, including K values, substrate names, source organisms, and UniProt IDs.

2) Filtering for Wild-Type Enzymes [15]: Among the collected enzyme entries, only those
describing wild-type enzymes were retained. Wild-type enzymes, having undergone long-term
natural selection and optimization, exhibit relatively stable and reliable structures and functions,
making them more suitable for the purposes of this study.

3) Accurate Matching of Substrate Information: Substrate names were used to retrieve their
corresponding Simplified Molecular Input Line Entry System (SMILES) representations.

4) Standardization of K _ Values: To facilitate subsequent data processing and analysis, all K
values were transformed using the base-10 logarithm (logie), thereby normalizing them to a
consistent numerical range. This transformation also helps mitigate the influence of extreme and
outlier values on the analysis.

5) Acquisition of Structural Files: Structural files for enzymes and substrates were obtained from
the UniProt [16] and PubChem [17] databases. Entries without corresponding structural data were
excluded from the dataset.
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Features within the catalytic domain have a significant impact on enzyme K values. To perform K
prediction based on these features, it is first necessary to obtain the enzyme-substrate complex
structure. Molecular docking focuses on studying the interactions between receptors and ligands. By
simulating the binding process between enzymes and substrates, it is possible to obtain their
complex structures. Currently, there are various molecular docking methods, each employing
different algorithms and yielding varying results. Choosing an appropriate docking method is crucial
for accurately modeling enzyme-substrate interactions and subsequently identifying the catalytic
domain.

Two key components in molecular docking are sampling methods and scoring functions.
Sampling methods explore different orientations and conformations of ligands within the receptor’s
binding site, aiming to find the optimal binding pose to maximize interactions. Scoring functions
evaluate the quality of each binding pose by assigning a numerical score. Wang et al [18].
systematically evaluated the performance of 10 docking approaches—5 commercial tools
(LigandFit, Glide, GOLD, MOE Dock, and Surflex-Dock) and 5 academic tools (AutoDock,
AutoDock Vina, LeDock, rDock, and UCSF Dock)—by assessing the accuracy of their sampling
methods and scoring functions. Their results showed that GOLD and LeDock offered the best
sampling performance, while AutoDock Vina provided the most accurate scoring capability.
Therefore, this study selected AutoDock Vina [19] and LeDock [20], two top-performing academic
software tools in both sampling and scoring, for molecular docking analysis.

The input to the proposed model consists of structural files of enzymes and substrates, which
contain their respective three-dimensional (3D) structural information. By parsing these structural
files, the 3D data can be represented in the form of graphs, which serve as inputs to the deep
learning model.

For proteins, their 3D structures were parsed using a Python-based program. Specifically, the
program iterated through the amino acids in each protein to extract key information such as
sequence data, atomic coordinates, and torsion angles between atoms. This process enabled the
representation of a protein as a 3D graph [21] G=(V,E), where each node vEV corresponds to an
amino acid residue and carries both scalar and vector features. Additionally, spatial distances were
computed between each amino acid residue and all others. For each residue, the 30 closest
neighboring residues were identified, and edges were created between them to form the edge set E.
Each edge e €E also contains scalar and vector features.

Given that the catalytic domain plays a crucial role in enzyme-substrate binding but is also
influenced by the global structure of the enzyme, two strategies were employed when converting the
protein’s 3D structure into graph representations: In the first method, all amino acids in the enzyme
structure are traversed, and the entire protein is represented as a graph (Figure 1(a)). This approach
considers the global structure and properties of the enzyme, thereby offering more comprehensive
information for prediction. The second method focuses exclusively on amino acids located within
the specific structural domain involved in enzyme-substrate interactions or catalysis [22] (Figure
1(b)). Only the amino acids within the defined circular region are considered and converted into a
graph. This localized representation more precisely reflects the regions of the enzyme responsible
for substrate binding and catalytic activity.
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(a)The entire region (b)The local region

Figure 1: Traversal of amino acid regions

For substrate molecules, the RDKit toolkit [23] was used to parse their structural files. Chemical
features of the nodes (atoms) and edges (bonds) were extracted using TorchDrug [24], allowing each
substrate to be represented as a graph G=(V,E), where each node vEV represents an atom and each
edge e €E denotes a bond within the molecule.

2.4. Model architecture overview
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Figure 2. Overview of model

The overall architecture of the model is shown in Figure 2. The model is designed to predict
enzyme K, values based on the structural files of enzymes and substrates. First, the structural files
are converted into graph representations using Python, enabling subsequent feature extraction and
learning. The protein graph is then processed by a Geometric Vector Perceptron (GVP), which
focuses on learning key features from the enzyme. Meanwhile, the substrate graph is processed by a
Graph Isomorphism Network (GIN), which captures structural features of the substrate. Once the
features of both enzyme and substrate are obtained, they are fused and passed into a Transition
Network for training and prediction.

The GVP, proposed by Jing et al [25]., is a network architecture based on a message-passing
mechanism and is specifically designed for tasks involving 3D data and shape recognition. Since a
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protein’s three-dimensional structure is essential to its biological function, the GVP is particularly
adept at utilizing 3D coordinate information to accurately capture structural features. It has shown
excellent performance in the field of protein design. In this study, the GVP is employed to extract
features from proteins and outputs a feature matrix of shape (p,128), where p denotes the number of
amino acid residues.

The GIN, developed by Xu et al [26]., is a novel graph neural network architecture consisting of
multiple graph convolution layers. It incorporates graph isomorphism into the network structure and
utilizes a learnable node aggregation and update mechanism to extract global information from local
features. The core innovation of GIN lies in its node feature update strategy, which combines the
features of a node with those of its neighbors in the previous layer and applies a multilayer
perceptron (MLP) for spatial transformation and feature updating. This mechanism retains local
information while integrating broader contextual data. The update rule is defined as follows:

A = MEP® (140l 4 5, cni pY) (1)

In Equation (1), € is a learnable parameter, and hik) represents the feature of node v after k

aggregation steps. In this study, the GIN is used to learn substrate features, and the resulting feature
matrix is of shape (c,128), where ¢ denotes the number of atoms in the substrate.
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Figure 3. Transition model network

A Transition Network was constructed using multiple techniques to optimize the model’s
performance and enhance its stability, as illustrated in Figure 3. First, the enzyme and substrate
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features are combined to form a compound feature matrix of shape (p,c,128), ensuring that each
amino acid feature in the enzyme is associated with every atomic feature in the substrate. Next, the
input layer is normalized to improve data stability. A fully connected (dense) layer is then introduced
as the hidden layer, with both the input and output dimensions set to 128. This layer incorporates a
Dropout function and an activation function to reduce model complexity and enhance nonlinearity,
helping the model learn and identify patterns more effectively. Finally, a fully connected output
layer with an output dimension of 1 is defined. This layer receives and integrates the features from
the hidden layer and is responsible for predicting the enzyme’s K value, thereby completing the
end-to-end transformation from input to output.

This study adopts several evaluation metrics to assess the performance of the model, including the
coefficient of determination (R?), the Pearson correlation coefficient (Pearson), and the root mean
square error (RMSE).

R? measures the proportion of variance in the observed data that is explained by the model. Its
value ranges from 0 to 1. An R? of 1 indicates that the model perfectly explains the variance in the
data, whereas an R? of 0 indicates that the model fails to explain any of the variance. The calculation
is shown in Equation (2):

i (kie—kip)®
R ~1- s (o s) @)

Where: ki, is the predicted Ig K value, k;. is the experimentally measured Ig K value, k is
the mean of all measured values, n is the total number of data points.

The Pearson correlation coefficient measures the strength and direction of the linear relationship
between two variables. Its value ranges from -1 to 1. A value of 1 indicates a perfect positive linear
correlation, -1 indicates a perfect negative linear correlation, and 0 indicates no linear correlation.
The formula is given in Equation (3):

v (kie—k;) (kip—kfp)
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RMSE quantifies the average magnitude of the prediction error, serving as an indicator of model
accuracy. It is computed as the square root of the mean of the squared differences between predicted
and actual values. A smaller RMSE indicates better predictive accuracy. The calculation is shown in
Equation (4):

Pearson=

€)

RMSE = \/ 132 (kip — kae)” (4)

In this study, the trained model was first evaluated on the BRENDA test set to assess its ability to
predict enzyme K values from structural information. Additionally, the two proposed strategies for



Proceedings of the Sth International Conference on Biological Engineering and Medical Science
DOI: 10.54254/2753-8818/2025.25699

selecting protein feature regions were compared and analyzed. Further evaluation was conducted
using an independently collected test set from the SABIO-RK database. Finally, a comparison was
made with the method proposed by Kroll et al.

3.1. Results of experimental data collection

After processing all data entries for wild-type enzymes in the BRENDA database, a dataset
containing 11,112 entries was successfully constructed. To ensure fairness in model training and
evaluation, the dataset was randomly divided into a training set and a test set. Specifically, 9,179
entries were used for training and 1,933 entries were used for testing. This dataset, derived from
BRENDA, served as the primary data source for training and evaluating the model.

To further verify the model’s predictive capability, an independent dataset containing 447 entries
was obtained from the SABIO-RK database. This dataset is completely independent of the
BRENDA data and includes only entries that are not present in BRENDA. It was used as an external
test set and served as the basis for comparison with the method developed by Kroll et al.

3.2. Prediction results and discussion on the BRENDA test set

Using the first protein traversal strategy described in Section 2.3, the model was trained and
evaluated, with results shown in Model 1 of Table 1. For the second traversal strategy, it was
necessary to first obtain enzyme-substrate complex structures via molecular docking. In this study,
AutoDock Vina and LeDock were adopted as the docking tools. Based on the docking results, two
different local catalytic domain sizes were tested: A local region with a 1.5 nm radius centered
around the substrate's docking position. A larger region with a 2.0 nm radius. The performance of
the models trained with these local regions is presented as Models 2, 3, 4, and 5 in Table 1.

Table 1. The training results of the model

Model Feature Region Selection Method Docking Method ~ Region Radius/nm  Pearson RMSE  R?

Model 1 Full Structure 0.706  0.873 0.479
Model 2 Local Structure Vina 1.5 0.704  0.877 0.474
Model 3 Local Structure LeDock 1.5 0.672  0.901 0.445
Model 4 Local Structure Vina 2 0.717  0.854 0.501
Model 5 Local Structure LeDock 2 0.691 0.883 0.467

When selecting the radius for the local region, it is important to note that proteins typically
contain multiple domains, each comprising approximately 100 to 200 amino acids. These domains
can independently fold and interact with ligands. A spherical region with a radius of 1.5 nm
generally includes around 100 amino acids, while expanding the radius to 2.0 nm usually
encompasses about 200 amino acids.

As shown in Table 1, Model 4 achieved the best performance, followed by Model 1. This
indicates that using local enzyme region features for training yields better prediction results than
using the entire enzyme structure. The inferior performance of the full-structure approach may be
attributed to the inclusion of numerous irrelevant features unrelated to the K  value, making it
difficult for the model to distinguish between essential and redundant information when training
data is limited. In contrast, focusing on the structural domain involved in enzyme-substrate
interactions helps eliminate extraneous features, leading to more accurate predictions on the test set.
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At the same time, Table 1 also shows that while models trained on local region features perform
best overall, the results are affected by the size of the selected region and the molecular docking
method used. Specifically, when the radius of the selected region is 2.0 nm, model performance is
better than with a 1.5 nm radius. Therefore, this approach requires multiple experiments to
determine the optimal region size.

Under otherwise identical conditions, models using AutoDock Vina for molecular docking
produced significantly better results than those using LeDock. This advantage stems primarily from
AutoDock Vina’s superior scoring function. Given that this study involves batch docking tasks, the
substrates with the highest docking scores from each software were selected for analysis. AutoDock
Vina's scoring function offers more accurate evaluations of docking quality. Although LeDock
exhibits excellent sampling capabilities, its top-scoring results do not always correspond to the best
actual binding conformations. Therefore, AutoDock Vina is more suitable for large-scale docking
tasks. This finding underscores the importance of selecting an appropriate molecular docking tool to
enhance prediction accuracy.

3.3. Evaluation of model performance on the independent SABIO-RK test set

The model developed in this study was trained and tested using data from the BRENDA database.
To assess the model's predictive performance and generalization capability, it is essential to test it on
data from alternative sources. Therefore, an independent test set was constructed using data from the
SABIO-RK database. The prediction results of the model on this dataset are presented in Table 2.

Table 2. Prediction results of the model in the SABIO-RK test set

Model Feature Region Selection Method Docking Method ~ Region Radius/nm  Pearson RMSE R’

Model 1 Full Structure 0.637  0.992 0.391
Model 2 Local Structure Vina 1.5 0.594 1.034 0.339
Model 3 Local Structure LeDock 1.5 0.628  1.009 0.370
Model 4 Local Structure Vina 2 0.675 0.94 0453
Model 5 Local Structure LeDock 2 0.63 0.993 0.390

As shown in Table 2, the models trained on the BRENDA dataset all achieved satisfactory
predictive performance on the SABIO-RK test set, fully demonstrating the stability and accuracy of
the proposed model. Among them, Model 4 again achieved the best performance on the SABIO-RK
dataset, significantly outperforming all other models. On the other hand, Model 2 performed the
worst, which highlights the need for caution when evaluating model performance—even if a model
performs well on the BRENDA test set, its generalizability must be validated with additional data
and experiments to confirm its effectiveness and stability.

3.4. Comparison of model performance

To further validate the model’s performance, we compared it with the model developed by Kroll et
al., which was also trained on data from the BRENDA database and evaluated using the SABIO-RK
test set. The reported evaluation metrics of their model on the SABIO-RK dataset are as follows:
Pearson correlation coefficient: 0.5905; RMSE: 1.0508; R?: 0.317.

By contrast, the model proposed in this study demonstrated significantly better performance on
the same test set. Specifically, Model 4 achieved an R? value of 0.453, which is markedly higher
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than the R? of 0.317 reported by Kroll et al. This substantial difference underscores the superior
predictive accuracy of the model developed in this work.

This study proposes a novel approach for predicting enzyme Michaelis constant (K, ) values based
on structural information, and successfully verifies its feasibility and effectiveness. Compared with
sequence-based prediction methods, the proposed structure-based approach offers several distinctive
advantages:

1) Closer correlation between structure and function: The three-dimensional structures of
enzymes and substrates directly reflect their functional properties, providing a more precise
foundation for predicting K_ values. Given reliable structural data, this approach enables more
accurate predictions.

2) Focusing on catalytic domains enhances prediction accuracy: By analyzing only the catalytic
domain of the enzyme and its interaction with the substrate, the model avoids interference from non-
essential structural features. This significantly improves prediction precision—something that
sequence-based models struggle to achieve—highlighting the unique strength of structure-based
prediction.

3) Stronger generalization capability: Experimental results show that the proposed model
achieved an R? of 0.453 on the independent SABIO-RK dataset, substantially outperforming Kroll et
al.’s sequence-based method (R* = 0.317). This demonstrates the model’s strong generalizability,
making it suitable for diverse datasets from different sources and with varying characteristics, thus
offering greater robustness and reliability.

To further improve the accuracy of K _ value predictions, future research could focus on the
following directions: Expanding and refining datasets: More comprehensive and higher-quality data
is essential for effective model training, which in turn leads to enhanced prediction accuracy.
Developing more effective feature selection strategies: Precisely identifying the core features most
relevant to K , while eliminating irrelevant or redundant information, will further boost both
prediction accuracy and the model’s generalization performance.
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