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Power systems face unprecedented complex challenges against the dual backdrop
of accelerating energy transition and intensifying global climate change. To achieve "dual
carbon" goals, large-scale integration of intermittent and volatile renewables like wind and
solar is essential, increasing operational and dynamic stability challenges for power systems.
Simultaneously, more frequent and intense extreme weather events heighten risks to power
infrastructure and raise the likelihood of large-scale blackouts. The combined effect of these
two factors drastically increases the risk of power systems suffering complex, variable, and
highly dynamic disturbance impacts, posing severe challenges to their safe and stable
operation. Traditional resilience enhancement methods have real-time performance and
adaptability limitations, while artificial intelligence technology provides a new paradigm for
building a dynamic resilience enhancement system. This paper systematically reviews the
application of Al in power system dynamic resilience, focusing on analyzing Al-enabled
dynamic resilience frameworks, key technologies, and development pathways. Comparing
traditional methods reveals the advantages of Al technology in improving power system
stability, enhancing scheduling decision accuracy, and reducing operation and maintenance
costs. Simultaneously, it discusses current technical bottlenecks and future research
directions, providing theoretical references for constructing a new generation of resilient
power grids.

Artificial Intelligence, Power System, Dynamic Resilience

Compared to traditional power grids, new power systems exhibit new characteristics in various
aspects, posing new challenges to comprehensive voltage sag assessment [1]. As power systems
expand and interconnect, ensuring grid security and stability during extreme disasters becomes more
challenging. Recently, low-probability, high-risk blackouts from such disasters have occurred more
frequently [2]. Traditional physics-model-based resilience enhancement methods struggle to adapt to
this rapidly changing operating environment. At the same time, Al technology, leveraging its
powerful data processing and intelligent decision-making capabilities, offers new solutions for
enhancing power system dynamic resilience. This paper compares traditional resilience
enhancement methods with Al-based methods to ensure Al technology can deliver its intended

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

70



Proceedings of CONF-APMM 2025 Symposium: Controlling Robotic Manipulator Using PWM Signals with Microcontrollers
DOI: 10.54254/2753-8818/2025.AD25815

effects and address existing deficiencies in current power system operation. It explores how to
effectively utilize Al technology to enhance the dynamic resilience of power systems and identifies
future research directions for Al in this field. This paper employs a systematic review approach to
comprehensively analyze the technical pathways and theoretical frameworks for Al-enhanced
dynamic resilience. The literature review analyzes traditional and Al-based dynamic resilience
enhancement methods, emphasizing Al-driven frameworks, key technologies, and application
strategies in power systems. This study offers theoretical guidance for next-generation resilient
grids, fosters Al integration in power systems, and improves system stability and disaster resistance.

2. Fundamental theory of power system resilience
2.1. Definition of resilience

Resilience was first proposed by ecologist C.S. Holling to measure ecosystem sustainability and the
ability to absorb changes and maintain population relationships after disturbances [3]. Derived from
this, power system resilience refers to preserving and restoring normal functions when facing severe
accidents, extreme disasters, or external attacks [4]. The most concerning aspect for people is
enhancing urban power system resilience, which involves taking specific measures and strategies to
strengthen the system's ability to withstand external disturbances, respond to emergencies, and
quickly restore regular operation. This holistic concept involves multiple levels from theory to
practice, encompassing six key characteristics: perception, adaptability, defense, recovery,
coordination, and learning capability. The system must identify potential risks, coordinate resources
to address disturbances, and optimize through experiential learning, thereby minimizing operational
impacts and ensuring continuous, secure urban power supply [5]. A resilient urban power system
should possess the capability for rapid and accurate assessment of system damage and inference of
failure scope, and be able to coordinate multiple emergency management strategies to facilitate a
faster recovery of normal function from a damaged state [6].

2.2. Dynamic resilience assessment steps

Traditional resilience theory primarily focuses on static resilience, i.e., the system's recovery
capability under specific conditions. In contrast, dynamic resilience highlights the system's capacity
for adaptation and recovery over varying temporal scales. Dynamic resilience assessment mainly
includes the following steps: First, collect basic data such as distribution network structure, load
data, basic parameters of Distributed Generation (DG) and energy storage, earthquake simulation
scenarios, and perform data standardization. Then, the weights of primary and secondary resilience
indicators under the three-state model will be determined, and a static comprehensive evaluation
matrix composed of the three-state models will be established to quantify dynamic resilience
indicators. Based on this, the three-state and dynamic resilience assessments can be performed [7].

3. Limitations of traditional dynamic resilience enhancement methods
3.1. Static nature defect in structural resilience assessment
3.1.1. Lack of functional correlation in transmission line assessment

Existing methods define damage states based on "component buckling degree" [8] (e.g., deformation
of K-shaped braces on the tower body [9]), but the functional indicators are detached from power
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supply reality, failing to establish a quantitative relationship with power interruption. Furthermore,
studies often only select "representative tower sections," lacking assessment for entire lines, thus
failing to reflect a specific transmission line's actual post-earthquake functionality and recovery
process. Additionally, secondary disaster mechanisms are overlooked. No research has yet explored
the mechanism of secondary disasters on transmission towers and lines, a major factor in
transmission tower damage identified in past earthquake disasters [10].

3.1.2. Neglect of substation building-equipment coupling effect

On the one hand, the building-equipment coupling effect in substations is neglected. Most substation
designs primarily focus on the electrical part while failing to consider building structures and
electrical components [11] simultaneously. Most existing analyses assume that damage to different
equipment is uncorrelated, which is inconsistent with reality.

3.2. Fragmented management coordination bottleneck in resilience recovery
3.2.1. Rigidity of emergency plan rules and lack of dynamic mechanism

Existing resilience recovery schemes in emergency management suffer from rigid recovery priority
rules. According to the State Grid Corporation's "Large-scale Blackout Emergency Plan," during
power system restoration, large power plants must be restored first, followed by the planned
restoration of power supply to important areas, key cities, and critical users. This approach lacks a
dynamic assessment of damage severity. For example, in the process of power system restoration,
certain assets located in proximity to substations may sustain extensive damage, resulting in
protracted repair durations. Consequently, prioritizing the restoration of such equipment may not be
the most effective strategy [12]. This exposes the current lack of regular revision and updating of
emergency plans and the absence of a dynamic adjustment mechanism. After all, when emergency
plans are applied to actual incidents, new problems may emerge, necessitating summary, induction,
modification, and improvement based on shortcomings revealed in practical operations.

3.2.2. Fragmented cross-system data and absence of coordination mechanism

In emergency situations, heterogeneous data formats among various departments and agencies
substantially impede the effectiveness of adaptive resilience restoration. Concurrently, there is no
unified, comprehensive system for resilience recovery, and opportunities for cooperation and
communication between departments and agencies under standard management are limited. In
summary, fragmented plans and cross-system disconnection delay recovery and harm enhancing
dynamic resilience.

3.3. Contradiction between computational accuracy and timeliness of resilience models

Existing models for resilience enhancement, such as various post-disaster repair models [13] and
emergency assessment models [14], all face the dilemma where high physical model accuracy and
real-time requirements cannot be simultaneously satisfied.
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4. Artificial intelligence enhancing dynamic resilience
4.1. Overview of Al and its advantages

Through big data analysis, artificial intelligence technology can generate programs analogous to
human thinking to handle complex problems. Its characteristics, like parallelism and memory, give it
significant advantages in enhancing power system dynamic resilience. Leveraging its powerful
capabilities in data mining, pattern recognition, and real-time decision-making, Al provides a novel
pathway for improving the grid's dynamic resilience against sudden disturbances (e.g., faults,
extreme disasters). Dynamic resilience emphasizes the system's ability to rapidly predict, withstand,
recover from, and adapt to disturbances. Al applications in this field are mainly manifested in the
advanced perception of grid status, rapid fault blocking, and intelligent generation of recovery
strategies.

4.2. Al-enabled dynamic resilience framework

The Al-enabled dynamic resilience framework consists of four links: data acquisition, model
training, decision optimization, and execution feedback. Dynamic resilience enhancement can be
achieved by collecting real-time power system operational data and utilizing Al algorithms for
model training and optimization.

4.3. Role of Al in enhancing dynamic resilience
4.3.1. Al-enabled resilience perception and advanced defense

Enhancing grid dynamic resilience first relies on accurately perceiving potential risks and advanced
defense (preventive control). Conventional physics-based preventive control strategies frequently
encounter limitations in model fidelity and computational efficiency when addressing the intricate,
dynamic instability phenomena introduced by high levels of renewable energy integration and
widespread deployment of power electronic devices.

Al technology, particularly deep learning, offers possibilities to break through these bottlenecks.

First, Al enables data-driven security risk assessment. Al can deeply mine implicit stability
patterns and risk features from the massive historical operational and simulation data accumulated
by the grid, freeing itself from dependence on precise physical models, to achieve fast and accurate
security state assessment. For example, models based on Deep Belief Networks (DBN) [15] or
Artificial Neural Networks (ANN) [16] can establish mapping relationships between system state
variables and transient stability margin, voltage stability index, frequency stability risk, etc. They are
capable of evaluating a range of stability risks—including power angle, voltage, frequency, and
wide-band oscillatory instabilities—encountered by the power grid under both present and
anticipated future operational scenarios in real time, thereby establishing a critical basis for informed
control strategies.

Based on risk assessment results, Al can generate intelligent preventive control decisions, such as
assisting in developing economical and efficient preventive control strategies. Algorithms like
Decision Trees (DT) [17] based on rule learning can learn stability rules from data to guide
generator rescheduling scope and direction, such as identifying critical units and their output
adjustment thresholds. Embedding Al-trained stability evaluators (e.g., ANN models predicting
Critical Clearing Time CCT [18]) as "black-box constraints" [19] into intelligent optimization
algorithms, like Bayesian Optimization [20], can solve optimal power flow problems considering
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multiple security constraints, minimizing preventive control costs (e.g., generation rescheduling
cost) while satisfying stability margin requirements.

Furthermore, integrating big data analysis and Al (such as LSTM) [21] enables high-precision
short-term prediction of load, renewable energy output, and critical equipment status (such as
temperature and vibration). This advanced perception capability allows the system to anticipate
potential overloads, voltage limit violations, or equipment failure risks, providing a basis for
proactive operational adjustments and reserved safety margins, which is key to resilience defense.

Fast and accurate emergency control is the core for preventing accident escalation and maintaining
system stability when faults or disturbances occur in the grid. It is also the core manifestation of
dynamic resilience. The core value of Al in this phase lies in its decision-making speed, which far
exceeds traditional methods.

Al models can achieve millisecond-level emergency control decisions. Utilizing Al models like
Support Vector Machines (SVM) [22] or Random Forests [23] to rapidly calculate the sensitivity of
stability indices to control variables, combined with optimization models, can quickly generate
emergency control strategies. Deep Reinforcement Learning (DRL) (such as combining CNN and
Q-network) [24] can also achieve "end-to-end" control. Interacting and learning with grid simulation
environments can directly map observed system states to optimal control actions, such as which unit
to trip, how much load to shed, or whether to deploy braking resistors. This method bypasses
complex modeling and optimization solving processes, achieving near-real-time optimal control
decisions after training convergence, particularly suitable for time-critical transient stability
emergency control. Al can also perform intelligent fault diagnosis and location. Computer vision
(CV)-driven artificial intelligence leverages the analysis of both visible spectrum and infrared
imagery captured during drone-based inspections to autonomously and efficiently detect anomalies
and malfunctions in transmission lines and substation apparatus. This approach markedly reduces
the time required for fault localization and delivers essential data to expedite the isolation of fault
sites and the development of restoration protocols [25].

Al can significantly assist in coordinated recovery and resource scheduling. Al can optimize
resource scheduling and network reconfiguration strategies during post-disaster recovery. Integrating
multi-source data such as grid topology, fault information, available resources, and traffic
conditions, Al algorithms can plan optimal repair routes and restoration sequences to maximize the
scope and speed of power supply restoration, enhancing system recovery resilience [26].

Enhancing grid dynamic resilience relies on the deep synergy between the power physical system
and the information and communication system, i.e., establishing a Cyber-Physical System (CPS).
Utilizing Al and simulation technology to study the mutual influence between the information
network and the physical power grid under faults or disasters, coupled modeling and simulation can
identify how information layer failures trigger or exacerbate physical layer collapse, and vice versa,
thereby identifying overall system vulnerabilities. Establishing an information technology-based
unified dispatch mechanism for power information and communication ensures that critical control
commands and status information can be transmitted quickly and accurately through multiple
reliable paths (including ground fiber optics, satellite communication, and drone relay temporary
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networks) during extreme events, guaranteeing control system availability and ensuring unified
dispatch and emergency communication [26].

Al provides new ideas for solving the coordination problem between preventive and emergency
control. The coordination problem can be transformed into a bi-level optimization [27]. For instance,
DT identifying stability region boundaries and sensitivity analysis [28] can narrow the control
search space. Alternatively, Al can solve sub-problems separately, aiming to minimize total control
costs globally and achieve the optimal balance between economy and security.

Despite Al's enormous potential in enhancing grid dynamic resilience, key challenges remain. The
first is Al model reliability. Power systems have extremely high safety requirements. Key challenges
include poor interpretability of Al models, particularly "black-box" deep learning models,
misclassification of unsafe states under sample imbalance, and insufficient generalization to novel
operating modes or rare faults [29]. Critical future directions include continuous online learning,
transfer learning, incorporating physical rules using knowledge graphs, and rigorous model
verification and robustness testing.

Furthermore, high-performance AI relies on high-dimensional, high-quality data. This
necessitates deploying high-precision intelligent sensors and employing data cleaning and
augmentation techniques.Data privacy and security are paramount. Differential privacy,
homomorphic encryption, and federated learning are recommended to safeguard sensitive data and
mitigate adversarial and poisoning attacks on Al models. In the future, with breakthroughs in Large
Language Models (LLM) [30] in complex pattern recognition, reasoning, and multi-source
information fusion, and the maturation of edge computing and digital twin technologies, Al will play
a more central role in building smart resilient grids with "autonomous perception-cognition-
decision-recovery" capabilities, promoting the safe and stable operation of new power systems in
highly uncertain environments.

This paper reviews Al's theoretical frameworks, key technologies, application advantages, and
challenges in enhancing power system dynamic resilience. Traditional physics-based methods face
limitations due to high renewable penetration and extreme events. Al offers a new paradigm via data
mining, real-time decision-making, and self-learning. Deep learning enables dynamic perception and
risk assessment for intelligent control. Deep reinforcement learning facilitates millisecond-level
emergency control. Computer vision accelerates fault diagnosis and optimizes resource scheduling.
Al enhances cyber-physical synergy, ensuring communication reliability and coordinating control
through bi-level optimization. Compared to traditional methods, Al improves stability, decision
speed, reduces costs, and enhances self-adaptation, breaking resilience bottlenecks.

This paper needs more empirical case studies, broader literature coverage, and deeper discussion
of Al's reliability and ethical risks. Future work should enhance Al model trustworthiness, deepen
cyber-physical resilience, explore applications of large language models in regulation, planning, and
decision-making, and investigate edge intelligence and digital twin-driven resilience. It should also
build knowledge graphs integrating physical rules and multi-agent decision frameworks, promote
standardization and ethical norms, and drive power systems toward smart resilience with
autonomous perception-cognition-decision-recovery-evolution capabilities to address energy
transition and climate change.
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