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Abstract: Brain-computer interfaces (BCIs) enable direct communication between the brain
and external devices by decoding neural signals, effectively bypassing traditional peripheral
pathways. Traditional BCI systems primarily relied on machine learning pipelines involving
preprocessing, feature extraction, and classification. However, these approaches often faced
challenges in generalizing across subjects and sessions. In recent years, the integration of
deep learning has greatly enhanced neural signal decoding, enabling end-to-end modeling
and improving adaptability. This paper explores the evolution of decoding techniques from
traditional methods to state-of-the-art deep learning models, including convolutional neural
networks (CNNs), recurrent neural networks (RNNs) like long short-term memory networks
(LSTMs), Transformer architectures, and self-supervised learning frameworks. Moreover, it
discusses critical challenges such as low signal quality, high individual variability, limited
data availability, and real-time processing constraints. The results suggest that deep learning
methods in BCI neural signal decoding address traditional limitations by boosting accuracy
and real-time performance. However, challenges like signal quality, individual variability,
and real-time processing constraints persist. Thus, future developments at the convergence
of artificial intelligence and BCI technologies highlight the imperative to integrate ethical
and societal considerations with ongoing technological innovation.
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1. Introduction

By decoding neural signals such as electroencephalography (EEG), Brain-Computer Interface (BCI)
allows direct communication between the brain and external devices, bypassing traditional muscle
and nerve pathways. The shift of BCI from research to practical applications in neurorehabilitation
and assistive control is being accelerated by advancements in neuroscience, artificial intelligence,
and sensor technology. Most current studies focus on decoding non-invasive signals such as EEG
and ECoG, but issues like signal non-stationarity, low signal-to-noise ratio, and high inter-subject
variability remain critical challenges limiting BCI performance [1]. Moreover, traditional machine
learning methods, such as support vector machines (SVM), linear discriminant analysis (LDA), and
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k-nearest neighbors (KNN), rely on handcrafted features. Although they perform well in early-stage
tasks, they show clear limitations in complex tasks and cross-subject generalization, and a unified
and efficient decoding paradigm is still lacking. In light of this, by adopting a literature review and
systematic comparative classification method, the paper examines the development of neural signal
decoding methods in BCI systems, focusing on the shift from traditional machine learning to deep
learning and evaluating models’ decoding performance, spatiotemporal modeling, generalizability,
and effectiveness in overcoming key challenges. Specifically, it explores modeling differences of
various decoding methods applied to EEG and ECoG data, and provides an in-depth analysis of
deep learning architectures such as convolutional neural networks (CNN), recurrent neural networks
(RNN), Transformers, and generative adversarial networks (GAN) in optimizing feature extraction
and temporal modeling. Moreover, key strategies addressing cross-subject variability, low signal
quality, and limited training data are summarized, as these issues critically affect neural decoding
performance and limit BCI applications in complex human-computer interactions. This research
promotes BCI application in complex settings and supports future technological and industrial
development, offering strong academic and practical value.

2. Overview of neural signal decoding methods in Brain-Computer Interfaces

In BCI systems, the accurate decoding of neural signals constitutes the core process for identifying
user intent and enabling human-machine interaction. For years, the decoding of neural signals has
been structured around traditional machine learning approaches, which involve sequential steps of
pre-processing, feature extraction, and classification [2]. Through the handcrafted feature extraction
methods, raw EEG or ECoG signals are transformed into structured numerical features, which serve
as inputs for classifiers tasked with inferring user intent. Traditional machine learning approaches
were widely adopted in early BCI systems owing to their simplicity, computational efficiency, and
interpretability. However, prior studies have pointed out that such methods often rely on features
that lack sufficient scalability and generalizability. Particularly when handling highly dynamic and
non-stationary EEG signals, these methods frequently suffer from notable performance degradation
in cross-task or cross-subject scenarios [3].

To tackle these challenges, deep learning techniques have attracted increasing attention in recent
years for neural signal decoding in BCI. Leveraging advances in GPU computing power and the
availability of large-scale neural datasets, deep learning architectures have shown clear strengths in
modeling and classifying high-dimensional neural signals, thereby effectively enhancing decoding
accuracy and system robustness [4]. Of the many deep learning techniques available, CNNs were
among the earliest to gain widespread adoption due to their effectiveness in extracting spatial
structural features from multichannel EEG or ECoG signals. Classical architectures like EEGNet
introduced depthwise separable convolutions, hence enabling lightweight models that maintain high
performance and fit well with low-channel, resource-constrained BCI systems. Afterward, RNNs
and LSTMs were applied to temporal modeling tasks in neural signals, including attention state
estimation and emotion recognition. Recently, Transformer-based models have gained attention for
EEG sequence modeling due to their powerful global attention mechanisms, which enable capturing
long-range dependencies and improving feature representation efficiency. Additionally, emerging
frameworks like GANs and self-supervised learning improve BCI by enhancing data augmentation,
few-shot learning, and cross-task transfer. Thus, deep learning has expanded neural signal decoding
capabilities and is becoming the dominant method in BCI research.
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3. The neural signal decoding approach based on artificial intelligence techniques

3.1. The application of CNNs in EEG decoding

In recent years, CNN has been widely adopted for EEG decoding due to its ability to automatically
extract spatial features from multichannel EEG data, leveraging structural advantages like local
connectivity, weight sharing, and multi-level feature extraction. This makes it particularly suitable
for BCI applications such as motor imagery, attention recognition, and emotion classification [2].
Unlike traditional methods relying on handcrafted features and separate classifiers, CNN provides
end-to-end modeling that directly learns high-level, discriminative features from raw signals. The
convolutional layer, as the core component of CNN, functions by sliding small filters over the input
data to extract local features. Each filter has learnable weights that detect specific patterns, enabling
CNN to flexibly capture complex spatial structures and effectively model multichannel neural
signals [5]. For instance, EEGNet introduces deep and separable convolutions to effectively extract
both spatial and spectral features from EEG signals while maintaining a lightweight structure and
high classification accuracy [6]. During training, CNN updates its weights through backpropagation
by calculating gradients of the loss function with respect to each parameter, thereby minimizing
overall prediction error. In cross-subject decoding, CNN models combined with data augmentation
have achieved robust performance, with an average classification accuracy of 73% and resilience to
variations in time window settings [7]. In addition, it effectively decodes EEG signals to identify
motor intentions for controlling electromyographic assistive devices in upper-limb rehabilitation.
With strong spatial feature extraction and good generalizability across individuals and tasks, CNN
stands as one of the most representative and valuable deep learning models in EEG decoding,
forming the foundation for portable, high-precision BCI systems [7].

3.2. The application of RNN and LSTM in temporal decoding

In EEG decoding tasks, a considerable amount of essential information is embedded in the temporal
structure of the signals. This is particularly evident in tasks such as motor imagery, attention
switching, and imagined speech, where neural activity typically exhibits strong temporal
dependencies. Thus, RNN and its variant LSTM have been widely employed to model the dynamic
evolution of neural signals, thus improving decoding accuracy and system stability [4]. By
incorporating recurrent connections, RNNs can retain information from previous time steps,
enabling effective modeling of short-term dependencies. Nevertheless, standard RNNs often
struggle with vanishing gradients when capturing long-term dependencies. As such, LSTMs regulate
information flow through gating mechanisms. In, particular, the forget gate discards irrelevant
information to prevent outdated states, the input gate controls the addition of new information, and
the output gate determines the relevant information for the final network output. This gating
mechanism creates a “selective memory” for each EEG segment, enabling the model to retain key
neural features while filtering out noise and artifacts. For example, LSTM, combined with three
traditional machine learning methods, was applied to classify five vowel sounds and silence. Among
these, the highest accuracy of 86.9% was achieved by LSTM, while traditional methods reached
only about 60% [8]. Accordingly, RNN and LSTM architectures excel at capturing temporal
dependencies in EEG signals, thus making them ideal for modeling the complex dynamics of neural
activity. Their core design principles have paved the way for advanced models and remain valuable
in EEG decoding.
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3.3. The application of transformer in sequence modeling

The Transformer model, initially introduced in natural language processing, has gradually surpassed
traditional sequence models because of its capability to capture long-range dependencies and its
efficient parallel computing. In recent years, the model has demonstrated outstanding performance
in EEG decoding tasks across multiple domains, including motor imagery, emotion recognition, and
epilepsy detection [9]. By leveraging its self-attention mechanism, it effectively captures temporal
dependencies and spatial features in EEG signals. In contrast to conventional sequential models,
Transformers eliminate the need for fixed window sizes and bidirectional processing limitations.
Instead, it establishes dependencies across the entire sequence via self-attention, which provides a
significant advantage when dealing with highly nonlinear and non-stationary EEG signals. Besides,
the Transformer architecture can represent multi-channel EEG data as token sequences, explicitly
modeling inter-channel relationships and capturing co-activation patterns across cortical regions.
Studies demonstrate that Transformers outperform CNNs and RNNs in both classification accuracy
and cross-subject generalization for diverse BCI tasks, establishing them as a dominant approach in
modern EEG decoding research [10]. Based on this framework, EEG Conformer integrates CNN’s
local feature extraction with Transformer’s global modeling. It begins by capturing fine spatial
patterns using one-dimensional and channel-wise convolutions, followed by multi-head attention to
model long-range dependencies, and concludes with feature classification through fully connected
layers. Evaluations on multiple public datasets show that it achieves state-of-the-art accuracy in
motor imagery and emotion recognition tasks [11]. This is attributed to the Transformer’s use of
attention mechanisms, which replace fixed kernels and recurrence, enabling dynamic information
selection and improved interpretability. For multi-channel EEG, the model combined with channel
attention can capture latent spatial structures and connectivity, enhancing cross-regional integration
[9]. Despite challenges like overfitting and large model size on small EEG datasets, Transformer
performance has been improved through lightweight models, pre-training, augmentation, and
transfer learning [10]. Thus, Transformer provides a novel EEG decoding paradigm, uniting CNN
and RNN strengths with global context modeling, poised to lead next-gen BCI systems.

3.4. The application of GAN and self-supervised learning in Brain-Computer Interface

In BCI systems, training high-performance decoders often requires large amounts of labeled EEG
data. However, EEG data collection and annotation are costly and slow, while individual variability
and artifacts limit model generalization and application. To enhance robustness and flexibility in
brain signal modeling, recent advances leverage GAN and SSL techniques. For example, GANs are
effective in artifact removal, augmenting limited EEG datasets, and aligning cross-domain data in
open-world EEG decoding. Models such as CycleGAN and Reversible-GAN reconstruct “clean”
signals from noisy EEG or map EEG from different sources to a unified distribution, enhancing
decoder stability and generalization. However, CycleGAN performs suboptimally on low-SNR EEG
signals, making Reversible-GAN a more effective variant [12]. In response, the Single-Shot
Reversible GAN (SSRGAN) was proposed to learn a bidirectional mapping between corrupted and
clean EEG without requiring paired training data [13]. SSRGAN is specifically applied to remove
ballistocardiogram artifacts commonly encountered during simultaneous EEG-fMRI acquisition.
Experimental results demonstrate that SSRGAN outperforms traditional artifact removal methods
like AAS and ICA by effectively suppressing interference while preserving more neural activity
information, showcasing strong artifact adaptability and cross-distribution generalization [13]. In
addition, some studies have introduced pseudo-tasks during unsupervised pretraining to learn
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representations from unlabeled EEG data, reducing reliance on manual labels [12]. Together, GAN
and SSL provide effective training strategies for low-resource BCI systems and help pave the way
for more generalizable EEG decoders.

4. Hurdles and resolutions for neural signal decoding in Brain-Computer Interfaces

4.1. Signal quality and inter-subject variability

In BCI systems, decoding performance depends heavily on signal quality. EEG signals significantly
weaken through biological layers, producing low-quality readings, and are strongly susceptible to
electrical artifacts that often overlap neural frequencies, hindering stable feature extraction [4,14]. In
addition, due to significant individual differences in brain structure, neural response patterns, and
cognitive strategies, EEG signals generated by the same task often exhibit strong subject-specific
characteristics. This variability, along with EEG’s inherent non-stationarity, causes temporal and
spectral changes over time and across individuals, greatly limiting decoding model generalization
across subjects and sessions [15]. To enhance signal quality, strategies target both signal processing
and modeling. At the signal level, artifacts are eliminated using ICA, essential frequency bands are
preserved via bandpass filtering, and transient components are addressed with wavelet transforms.

Meanwhile, model-level techniques like noise-perturbed training, adaptive filtering, and
adversarial training (e.g., GAN), further improve robustness against artifacts and individual
variability [16]. To tackle inter-subject variability, methods emphasize subject-specific modeling for
adaptation and employ transfer learning and domain adaptation to enhance cross-subject
generalization. Transfer learning enables knowledge acquired from existing subjects to be
transferred to new individuals, reducing the need for large training datasets. To reduce inter-subject
variance, domain adaptation employs adversarial alignment and multi-source learning, thus
demonstrating strong EEG decoding performance [12].

4.2. Real-time performance and system latency

In real-world BCI use, rapid system response is essential for ensuring smooth user interaction and a
positive experience. For neurorehabilitation and prosthetics, BCI systems must process signals
within milliseconds to enable true closed-loop control between intention and action. However, the
majority of EEG decoding models are trained and tested under offline conditions. High latency, poor
real-time performance, and unstable responses often occur when these systems are deployed on
embedded or online interactive platforms [4]. These challenges hinder the use of deep learning
under tight time constraints. In particular, the main causes of latency bottlenecks include complex
model architectures, large parameter sizes, and time-consuming inference processes. Models such as
CNNs, BiRNNs, and Transformers typically consume substantial resources when handling entire
EEG sequences [12]. Additionally, while synchronous control schemes often yield higher accuracy,
their fixed time-window design causes response delays, limiting their use in continuous control tasks
like brain-controlled wheelchairs and robotic arms that require immediate feedback [17]. To reduce
computational cost and enhance real-time performance, real-time decoding systems often
incorporate lightweight components such as shallow CNNs, compact kernels, depthwise separable
convolutions, and simplified attention mechanisms. Input mechanisms have also improved, with
sliding windows and rapid decision strategies enabling models to focus on key signal segments and
reduce inference delays. On the hardware side, deploying trained models on high-performance edge
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devices such as FPGAs and NVIDIA Jetson significantly accelerates system response, supporting
real-time BCI applications [18].

4.3. Data scarcity and cross-task learning

Though deep learning has greatly improved neural decoding in BCI systems, data scarcity and poor
generalization remain key obstacles to further progress. In particular, the strong non-stationarity and
subject-specific variability of EEG signals lead to markedly different patterns across individuals
performing the same task [19]. Moreover, the high cost of expert-labeled EEG data, coupled with
the limited size, class imbalance, and task constraints of public datasets, poses a major challenge to
effective deep model training. Collectively, these limitations undermine decoding robustness across
different tasks and individuals. To enhance generalization, data augmentation techniques generate
synthetic variations, like noise injection, temporal jittering, spectral shifts, and segment resampling,
to increase data diversity and mitigate overfitting. Few-shot learning and meta-learning approaches
incorporate structural priors and fast adaptation mechanisms, enabling models to perform well even
under limited sample conditions. Besides, self-supervised and unsupervised pretraining strategies
leverage auxiliary tasks, such as temporal prediction or surrogate objectives, to extract informative
representations from unlabeled EEG data, thereby reducing the need for large labeled datasets in
downstream tasks. Also, transfer learning and domain adaptation enhance decoder robustness across
tasks and subjects by aligning cross-domain features for effective knowledge transfer [12].

5. Future outlook on the integration of AI and BCIs

The transition of BCI technology from laboratory research to real-world implementation is being
accelerated by recent breakthroughs in artificial intelligence. By enhancing decoding accuracy and
speed, CNNs and RNNs push BCI performance forward. Meanwhile, transfer and self-supervised
learning ease data requirements and enhance generalization, thus paving the way for practical BCI
deployment. In neurorehabilitation, these advances have driven progress in motor recovery, speech
support, and epilepsy monitoring. Looking ahead, AI-powered BCIs are expected to enable precise
neural modulation and personalized therapy, enhancing both rehabilitation outcomes and patient
well-being. Besides, BCIs are enabling smarter environments, real-time cognitive monitoring, and
more intuitive human-computer interaction. For instance, real-time EEG-based cognitive state
monitoring enables adaptive driving systems to adjust assistance strategies dynamically, enhancing
both safety and user experience. However, widespread adoption of BCI technologies still faces
major challenges. EEG signals remain highly susceptible to noise and inter‑individual variability,
and current algorithms lack robustness across diverse contexts and tasks. At the same time, handling
sensitive neural data raises acute privacy and ethical concerns; without clear legal frameworks,
misuse could erode user rights and public trust. To bring BCIs into real-world use, AI integration
must therefore deliver stronger algorithmic robustness, lighter models, stricter privacy protection,
and explicit ethical safeguards. These advancements must be underpinned by collaborative research,
regulatory alignment, and increased public awareness. Only such balanced growth of technology and
governance will allow BCIs to become reliable tools for intelligent interaction and precision
neurorehabilitation, laying the groundwork for a trustworthy human-AI symbiosis.
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6. Conclusion

This paper examines the progression of neural signal decoding techniques in BCI systems, focusing
on the transition from traditional machine learning to deep learning and the resulting changes in
performance and application scope. The results show that deep learning outperforms traditional
methods in accuracy, generalization, and real-time performance, establishing itself as the dominant
paradigm in neural decoding. Various architectures exhibit unique strengths in capturing spatial,
temporal, and long-range dependencies. Meanwhile, emerging approaches such as self-supervised
learning and GANs offer promising solutions to challenges such as data scarcity and inter-subject
variability. Looking ahead, the advancement of BCI depends not only on continuous algorithmic
innovation but also on coordinated efforts in policy, ethics, and public acceptance. Integrating AI
with BCI while ensuring privacy and data security will be critical to enabling its broader adoption
and real-world impact.
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