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As one of the most common malignant tumors among women worldwide, breast
cancer requires early diagnosis and accurate classification to significantly improve patient
survival rates. Conventional imaging techniques like mammography, ultrasound, and
magnetic resonance imaging (MRI) play a pivotal role in breast cancer screening.
Nonetheless, they are constrained by relatively low specificity and a significant dependence
on the expertise of medical professionals. In recent years, machine learning and deep
learning techniques have provided new approaches for the intelligent diagnosis of breast
cancer by extracting high-dimensional features from medical images. This study delves into
the pathological aspects, imaging technologies, and the implementation of machine learning
algorithms in the context of breast cancer. It conducts a comprehensive review of the
diagnostic criteria for non-invasive, early-stage invasive, and fully invasive breast cancers,
while also evaluating the strengths and weaknesses of various imaging modalities, including
mammography, ultrasound, MRI, and nuclear medicine imaging. The limitations of
conventional imaging methods in subtype differentiation are also discussed. Furthermore, by
integrating radiomics and deep learning models such as convolutional neural networks
(CNN) and random forests, the study evaluates the performance of intelligent diagnostic
systems in breast cancer classification. Clinical cases and publicly available datasets were
used as data sources. The results show that combining multimodal imaging features with
machine learning algorithms significantly improves diagnostic accuracy, achieving an area
under the curve (AUC) of 0.922. This research provides theoretical support and technical
references for the precise diagnosis and treatment of breast cancer. Future work should focus
on enhancing model generalizability and conducting multi-center clinical validation.
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Breast cancer is the most prevalent malignant tumor among women worldwide. Early diagnosis and
accurate classification are critical for improving patient prognosis. While conventional imaging
methods like mammography, ultrasound, and Magnetic Resonance Imaging (MRI) are extensively
utilized for breast cancer screening, they face limitations such as reduced specificity, sensitivity to
breast density variations, and a significant dependence on the clinician's expertise. For instance,
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mammography shows low sensitivity in dense breasts, ultrasound has limited specificity for
detecting small lesions, and MRI is associated with a high false-positive rate. Moreover, diagnostic
consistency varies significantly across different medical institutions.

Artificial intelligence (Al), particularly machine learning and deep learning, has demonstrated
substantial potential in medical image analysis. Radiomics enables the construction of predictive
models by combining quantitative imaging features with clinical data, facilitating molecular
subtyping and prognosis assessment. Deep learning approaches, such as convolutional neural
networks (CNNs), can automatically extract high-level features, reducing subjective bias and
enhancing classification accuracy. However, current studies often focus on single-modality data or
individual models, lacking systematic investigation into multimodal fusion strategies.

This study is designed to fuse multimodal imaging data with intelligent algorithms to craft an
efficient and robust model for breast cancer classification. The objective is to furnish technical
backing for accurate diagnosis and therapy, as well as to establish a basis for further model
refinement and validation across multiple centers.

The pathological classification and staging of breast cancer are critical for developing precise
treatment strategies. Various types of breast tumors include intraductal papillomas, ductal carcinoma
in situ (DCIS), encapsulated carcinoma, solid-type carcinoma, and invasive carcinomas [1]. These
classifications primarily depend on the presence or absence of myoepithelial cells at the epithelial-
stromal interface, as well as the degree of cellular atypia and dysplasia.

Non-invasive lobular neoplasia (LN) is further subdivided into atypical lobular hyperplasia
(ALH) and lobular carcinoma in situ (LCIS), based on the extent of involvement within the terminal
duct-lobular unit (TDLU). ALH involves less than 50% of the TDLU, whereas LCIS exceeds 50%
involvement [2,3]. Nevertheless, the term “LN” remains applicable in cases where quantitative
criteria cannot clearly distinguish the two, especially in core needle biopsy samples, where LN is
often an incidental microscopic finding [4,5].

The majority of breast cancers (over 70%) are classified as invasive ductal carcinoma of no
special type (IDC-NST), which reflects a broad histological category rather than specific
pathological features [3]. Invasive breast cancers include more than 20 histological subtypes, among
which IDC-NST is the most common, accounting for 70%-80% of all invasive cancers. The second
most common type is invasive lobular carcinoma (ILC), comprising approximately 10%, with the
remainder consisting of rarer subtypes such as mucinous, cribriform, micropapillary, tubular,
medullary, metaplastic, and apocrine carcinomas. These classifications are based on a wide range of
pathological criteria, including cellular characteristics, extracellular secretions, architectural
features, and immunohistochemical profiles. However, IDC-NST lacks distinct morphological
features, leading to its use as a general category, which does not fully capture the biological
heterogeneity of breast cancer.

Additionally, the classification of neuroendocrine neoplasms has been updated in accordance
with the latest WHO guidelines and aligns with IARC recommendations. Neuroendocrine tumors
(NETs) and neuroendocrine carcinomas (NECs, including small and large cell types) are now
considered distinct invasive carcinomas [5]. As with other invasive breast cancers, histological
grading should follow the Nottingham grading system [6]. Accurately diagnosing primary breast
neuroendocrine neoplasms (NENs) necessitates the identification of distinctive neuroendocrine
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histopathological traits, a consistent expression of neuroendocrine markers such as synaptophysin
and chromogranin A, and the ruling out of metastatic disease from other primary tumor locations.
Adopting this classification strategy is instrumental in formulating more precise treatment plans.

Mammography is currently one of the most commonly used methods for breast cancer screening,
particularly effective in detecting calcifications. Its advantages include high image clarity and
contrast, enabling the identification of non-palpable lesions, especially DCIS, which typically
presents as fine calcifications. However, its sensitivity decreases in dense breast tissue. Studies have
shown that mammography offers high specificity for breast cancer screening, but it carries a risk of
missed diagnoses in younger women or those with high breast density [7].

Ultrasound serves as a non-invasive and radiation-free diagnostic tool that is extensively used to
differentiate between benign and malignant breast masses. Its primary benefits stem from its
capacity to discern between cystic and solid lesions, as well as to evaluate the margins, shape, and
blood supply of the lesions. The application of high-frequency transducers has significantly
improved image resolution, aiding in the detection of small lesions that may not be visible on
mammography. Moreover, ultrasound-guided core needle biopsy can further enhance diagnostic
accuracy. Studies indicate that combining ultrasound with mammography can significantly improve
breast cancer detection rates, particularly in women with dense breast tissue [8].

Magnetic resonance imaging (MRI), owing to its high soft-tissue resolution and multiparametric
imaging capabilities, plays a vital role in preoperative assessment, high-risk population screening,
and treatment monitoring. Dynamic contrast-enhanced MRI provides hemodynamic information,
while diffusion-weighted imaging (DWI) reflects water molecule diffusion properties, with apparent
diffusion coefficient (ADC) values aiding in distinguishing benign from malignant lesions. Despite
its high sensitivity, MRI exhibits relatively low specificity and is prone to false-positive results.
Therefore, it is typically recommended to be used in conjunction with mammography and
ultrasound to improve overall diagnostic performance [9].

Nuclear medicine techniques, such as breast-specific gamma imaging (BSGI) and positron
emission tomography/computed tomography (PET/CT), can serve as auxiliary tools in selected
breast cancer cases. These modalities reflect tumor biological activity through tracer metabolism and
are useful in cases with atypical imaging findings or suspected recurrence. Although their use is
limited by radiation exposure and high cost, they remain valuable in complex diagnostic scenarios
[10].

Conventional manual diagnostic methods in breast cancer pathology are susceptible to numerous
influencing factors. First, the training of qualified professionals is time-consuming and challenging.
Second, there is substantial variability in diagnostic standards among different healthcare
institutions. Third, manual diagnostic efficiency is relatively low and often cannot meet the growing
clinical demand. Moreover, the accuracy of pathological interpretation heavily depends on physician
experience and subjective judgment, making it vulnerable to individual cognitive bias. Therefore,
developing and applying computer-aided diagnostic techniques is essential for enabling rapid
recognition of pathological image features, improving diagnostic efficiency and accuracy, and
reducing the workload of pathologists.
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3. Machine learning models
3.1. Role and limitations of traditional imaging in breast cancer subtype differentiation

Mammography, ultrasound, and magnetic resonance imaging (MRI) are currently the three most
commonly used imaging modalities in the diagnosis of breast diseases. Each offers specific
advantages in distinguishing ductal carcinoma in situ (DCIS) from invasive ductal carcinoma (IDC)
[11].

Due to its high sensitivity to microcalcifications, mammography is an essential tool for the early
screening of DCIS. In contrast, IDC often presents as an irregular mass on mammograms [12].
However, the overlapping imaging features of DCIS and IDC, along with limited sample sizes in
some studies, complicate the statistical analysis of calcification patterns, thereby constraining the
widespread clinical application of these findings [13].

Ultrasound, as a non-invasive and radiation-free imaging technique, plays a significant role in
evaluating the malignancy of breast lesions. Studies have shown that the diagnostic accuracy of
ultrasound for IDC can reach 92.0%, while that for DCIS is around 84.8% [14]. Moreover,
microinvasive breast cancer (MBC) lesions tend to be larger than DCIS, with more irregular
margins, microspiculations, and calcifications. However, compared to IDC, their sonographic
features lack specificity, necessitating a multimodal imaging approach for accurate differentiation
[15]. The development of advanced ultrasound techniques, such as elastography and contrast-
enhanced ultrasound, has further improved the diagnostic performance in non-mass-like breast
cancers.

MRI, owing to its superior soft tissue resolution and functional imaging capabilities, plays a
pivotal role in the preoperative assessment and molecular subtyping of breast cancer. Diffusion-
weighted imaging (DWI), by quantifying apparent diffusion coefficient (ADC) values, aids in
differentiating DCIS from IDC. Meanwhile, dynamic contrast-enhanced MRI (DCE-MRI) provides
hemodynamic information about the lesions [16-18]. Multiple studies have shown that models
combining DWI and DCE-MRI parameters outperform single-sequence approaches in subtype
classification, achieving an area under the curve (AUC) values exceeding 0.85 [19]. These
integrated techniques strongly support the improvement of diagnostic precision in breast cancer
imaging.

3.2. Integrated applications of Al in breast cancer imaging diagnosis

With the advancement of radiomics and deep learning techniques, intelligent diagnostic models
based on imaging data have shown great promise in the differential diagnosis of breast cancer.
Radiomics extracts high-dimensional features from large-scale medical images and integrates them
with clinical data to build predictive models, offering a novel approach to preoperative tumor
evaluation.

For instance, Wu et al. developed a nomogram model that combines clinical and radiomic
features to differentiate MBC from DCIS. The model achieved AUCs of 0.911 and 0.882 in the
training and testing cohorts, respectively, significantly outperforming single-feature models [20].
Hou et al. established a radiomics-based predictive model using mammography features, which
showed promising results in distinguishing DCIS from occult IDC, achieving an AUC of 0.71 in the
test set [21].

Jiang Yuan et al. further utilized radiomic features from DCE-MRI to build intratumoral,
peritumoral, and combined region predictive models. The combined model demonstrated the best
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performance, with an AUC of 0.922, significantly enhancing the differentiation between DCIS and
IDC [22]. Nevertheless, this study faced limitations such as small sample size, non-uniform data
sources, and potential subjectivity introduced by manual segmentation.

In the field of computer vision and deep learning, Shi et al. employed convolutional neural
network (CNN)-based algorithms to extract deep features from mammographic images and
constructed classification models to predict the presence of occult IDC in DCIS cases [23]. Results
indicated that even CNNs pre-trained on non-medical images performed comparably to traditional
handcrafted feature-based methods, demonstrating the potential of deep learning in this task. Zhu et
al. analyzed ultrasound images from 568 DCIS patients and compared various machine learning
models, including ResNet-50 and Inception-v3. The Inception-v3 model achieved the highest AUC
of 0.803 for identifying MBC, indicating that deep learning could assist clinicians in achieving more
precise diagnoses [24].

Among various machine learning models, the random forest algorithm has demonstrated particularly
strong performance [25]. In both training and test cohorts, the random forest model achieved AUCs
of 0.887 and 0.856, accuracies of 79.6% and 78.1%, and specificities of 78.6% and 87.1%,
respectively—outperforming seven other commonly used models. DelLong test results showed
statistically significant differences in AUC between the random forest model and decision trees,
support vector machines, and naive Bayes classifiers (P < 0.05), while no significant differences
were found with the remaining models. Overall, the random forest model exhibited strong stability
and generalizability in breast cancer imaging tasks.

Additionally, several studies have explored the integration of different imaging modalities with
Al models to further enhance diagnostic performance. For example, Shi et al. extracted deep
features from mammographic images using CNNs pre-trained on non-medical datasets and fused
these features with traditional handcrafted features to construct predictive models. Results showed
comparable performance between the two feature sets, suggesting that even models not fine-tuned
on medical images can effectively capture latent pathological information [26]. This finding
provides a theoretical foundation for the development of more generalizable Al models in medical
imaging.

This study systematically analyzed the pathological characteristics of breast cancer, current imaging
modalities, and the application of machine learning models. It identified the limitations of traditional
imaging methods in subtype differentiation and demonstrated the potential of artificial intelligence
in breast cancer diagnosis. By integrating radiomics and deep learning models, this study
constructed an efficient and robust classification model that provides a valuable technical reference
for precision medicine.

Nevertheless, the study has certain limitations. First, the use of single-source data may affect
model generalizability; future work should incorporate multi-center, large-scale clinical datasets for
validation. Second, existing models mainly focus on single imaging modalities, and strategies for
optimizing multimodal data fusion require further exploration. Additionally, the lack of model
interpretability remains a major bottleneck in deep learning applications. Future research should
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consider incorporating attention mechanisms or knowledge distillation techniques to improve model
transparency.

Looking ahead, the trajectory of intelligent breast cancer diagnosis research can be directed
towards several pivotal areas. Firstly, there is a need to develop versatile medical Al models that are
less reliant on the fine-tuning of medical images. This would broaden the applicability of Al across
different healthcare settings and enhance its robustness. Secondly, it is crucial to explore and
establish effective fusion strategies that amalgamate multimodal imaging with clinical data. Such
integration has the potential to significantly enhance diagnostic performance by providing a more
comprehensive view of the patient's condition. Thirdly, incorporating genomics and proteomics data
to construct multi-omics predictive models could offer deeper insights into the disease's biological
underpinnings, thereby improving prognostic accuracy and treatment planning. Lastly, there is a
pressing need to facilitate the clinical translation of these intelligent diagnostic systems. This would
involve rigorous validation and regulatory approval processes to ensure that these systems are ready
for real-world application, ultimately supporting personalized breast cancer treatment strategies. By
focusing on these directions, the field can make substantial strides towards more accurate, efficient,
and patient-centered breast cancer diagnostics.
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