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Abstract.  This paper investigates the numerical stability of QR decomposition, Singular
Value Decomposition (SVD), and Cholesky decomposition in least squares problems.
Through theoretical analysis and numerical experiments, the computational errors and
efficiency of the three decomposition methods are compared for matrices with different
condition numbers. The experimental results show that SVD decomposition exhibits the best
robustness for ill-conditioned matrices, while Cholesky decomposition is the most efficient
for well-conditioned matrices. Additionally, this paper compares the performance of direct
solving (without decomposition) with decomposition methods, demonstrating that
decomposition methods significantly outperform direct solving in terms of numerical
stability and computational efficiency. To further validate the findings, we conduct
experiments on both synthetic and real-world datasets, covering a range of matrix sizes and
condition numbers. The results highlight the trade-offs between accuracy and computational
cost, providing practical insights for selecting the appropriate decomposition method based
on specific problem requirements. This study not only reinforces the theoretical
understanding of matrix decompositions but also offers actionable guidelines for their
application in scientific computing and data analysis

Keywords:  Matrix decomposition, Numerical stability, Condition number, QR
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1. Introduction

The least squares method is a core approach for solving overdetermined linear systems widely used
in data fitting, signal processing, and machine learning. However, directly solving the normal
equations may lead to numerical instability, especially when the matrix condition number is large [1]
.

Matrix decomposition transforms the original matrix into a more manageable form, significantly
improving computational efficiency and stability [2]. This paper focuses on QR decomposition,
SVD decomposition, and Cholesky decomposition, analyzing their numerical properties in least
squares problems and validating their applicability through experiments. Furthermore, this paper
compares the performance of direct solving (without decomposition) with decomposition methods,
highlighting the advantages of decomposition methods [3].
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2. Theoretical background

2.1. Least squares problem (example)

The least squares solution     satisfies:

(1)

The analytical solution is

(2)

but direct computation may amplify errors due to the squared condition number of    

2.2. Matrix decomposition methods

(1) QR Decomposition
Decompose     into an orthogonal matrix     and an upper triangular matrix    :

(3)

Features: Avoids computing    , preserving the condition number    .
(2) SVD Decomposition
Decompose     into    , with the least squares solution:

(4)

Features: Optimal stability, capable of handling rank-deficient matrices.
(3) Cholesky Decomposition
When is     full-rank, decompose    , with the solution:

(5)

Feature: High computational efficiency, but sensitive to ill-conditioned matrices, and can only be
used in positive definite matrices

2.3. Condition number and numerical stability

(1) Condition Number
The matrix condition number

(6)

measures the sensitivity of the problem to the tiny perturbation of the initial values of the
multiplication by matrices. For the least square problems specifically, the relatively error will satisfy
the inequalities of

(7)
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As a result, the error of the solutions can be magnified exponentially if the condition number  
  is significantly large [4] .

For the Cholesky decomposition, direct calculation of      is required, so that the condition
number is magnified squarely by

(8)

leading to poor stability for Cholesky decomposition.
For the QR decomposition, the original matrix is decomposed into the multiplication of the

orthogonal matrix     and an upper triangular matrix    . Given that the orthogonal matrix     has
the norm equal to 0 for itself and its inverse    , the condition number remains the same that [5].

(9)

For the SVD, the orthogonal matrices act as the same functions, while the algorithm for SVD also
contains the truncation of the small singular values, it can reduce the condition number implicitly
and avoid the ill-conditioning problems.

(2) Floating-point Arithmetic
Due to the methods of the floating-point arithmetic, the computation of matrices will propagate

errors inevitably [6].
For the Cholesky decomposition, the prerequisite is that the matrix should by positive definite, so

the floating-point mechanism may damage the positive-definiteness and the occurrence of having
square root of the negative values. The square root and division of calculation will also lead to the
round-off error by calculating in the process of Cholesky decomposition.

(10)

For the QR decomposition, the Gram-Schmidt orthogonalization may loss orthogonality due to
the round-off error by calculating

(11)

Although improved methods such as Householder transformation and Givens rotation can
maintain orthogonality, round - off errors still exist.

For SVD, the iteration algorithm will also produce round - off errors when calculating the
singular values and singular vectors. Consequently, error propagation may lead to the loss of the
matrix's orthogonality.

3. Experimental design and implementation

3.1. Experimental setup

In the numerical experiment, the matrix of a specific dimension will be generated randomly and be
calculated by various decomposition approaches and the direct solving method. The final results will
be represented by the errors between the accurate solution and the numerical solutions, and the
computation time will also be considered as an index to exhibit the efficiency of the algorithm. Two

κ (A)

ATA

κ (ATA) =  κ(A)2

Q R Q
Q−1

κ (A) = κ (R)

Lii = √Aii − ∑i−1
k=1 L2

ik

qi = ai − ∑i−1
j=1(a

T
i qj)qj



Proceedings	of	CONF-APMM	2025	Symposium:	Simulation	and	Theory	of	Differential-Integral	Equation	in	Applied	Physics
DOI:	10.54254/2753-8818/2025.DL26155

42

categories of the matrices will be generated with well-conditioning being random and full-rank,
while the ill-conditioned ones are constructed by adding small perturbation to approximate
singularity and high condition number     .

Given that the Cholesky decomposition can only be utilized in the scenario that the matrix is
positive definite, two groups of matrices will be tested while the first group is the     and
the other group contains the matrices with     and is positive definite.

Tools: Python + NumPy/SciPy.

3.2. Experimental results

Table 1. Results for random matrix(100*50)

Method Well-conditioned error Well-conditioned times Ill-conditioned error Ill-conditioned times

QR 1.03e-12 0.00027s 4.89e-06 0.0037s
SVD 8.39e-13 0.00084s 2.88e-08 0.0076s
Direct 2.57e-12 0.00030s 4.34e-01 0.0094s

Table 2. Results for positive-definite matrix (50*50)

Method Well-conditioned error Well-conditioned times Ill-conditioned error Ill-conditioned times

QR 3.12e-14 0.00097s 6.45e-07 0.0029s
SVD 2.98e-14 0.00182s 3.82e-09 0.0086s

Cholesky 1.05e-14 0.00062s 9.87e-03 0.0012s
Direct 1.33e-14 0.00046s 8.46e-01 0.0040s

3.3. Discussion

As shown in Table 1 and Table 2, from the above results, we can conclude that Cholesky
decomposition has the smallest error and the highest efficiency when dealing with well - conditioned
problems. However, it can only be applied to positive definite matrices under restricted conditions.
Meanwhile, direct solving has a similar error but poorer stability.

For the ill-conditioned Matrix, SVD decomposition has the smallest error and the highest
numerical stability, although with the longest calculating time, followed by QR decomposition
which has moderate numerical stability. Cholesky decomposition and direct solving fail due to the
instability in the circumstances of ill-conditioning problems.

4. Practical application case study

4.1. Structural engineering analysis: ill-conditioned stiffness matrix in bridge problems

(1) Background
In bridge structural mechanics analysis, the stiffness matrix      ,which is usually positive

definite, may become ill-conditioned (    due to material parameter errors or redundant
degrees of freedom such as the over-constraint problems. Careful selection of numerical methods is
required when solving the equation     to reach the most precision results without considering
the limit of the efficiency of the algorithm, where     represents the characteristics of the stiffness of
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a specific engineering structure,     represents the displacement vector of nodes, and     is the load
vector representing the force exerted on the nodes [7].

(2) Experimental Design
Generate Ill-conditioned Stiffness Matrix: Construct a matrix      with a condition

number      by adding perturbation, Generate a load vector      with added Gaussian
noise.

Solution Methods: Use Cholesky decomposition, QR decomposition, and SVD decomposition to
solve for    

Evaluation Metrics: Relative error    .
Computation time.
(3) Results

Table 3. Results for engineering applications

Method Relative Error Computation Time

Cholesky 9.73e-01 0.00011s
QR 2.15e-06 0.00235s

SVD 1.04e-08 0.00731s
Direct 1.23e-00 0.00043s

As shown in Table 3, in engineering problems, efficiency can be negligible since instantaneity is
not required, while precision is a key factor to consider. Ill - conditioned problems prevent the
application of Cholesky Decomposition due to its numerical instability. As a result, SVD can be the
most suitable matrix decomposition for this problem.

4.2. Finance modeling: well-conditioned covariance matrix in investment combination

(1) Background
In the optimization of investment combination, the covariance matrix     is positive definite and

well-conditioned (   ) due to the feature of the data from the financial markets. The aim
is to calculate the optimal combination of the investment with least risk or highest profits by
minimize or maximize     , where      represents for the covariance of the assets and    
represents for the weight of the assets

(2) Experimental Design
Step1: Generate Well-conditioning Covariance Matrix:
Construct a matrix     by using the data from the history yield rate in 1000 days.
Step2:Solution Methods:
Use Cholesky decomposition, QR decomposition to get the answers.
Step3: Evaluation Metrics:
The difference of the objective function and the optimal solution theoretically.
Computation time.
(3) Results
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Table 4. Results for financial applications

Method Relative Error Computation Time

Cholesky 1.22e-21 0.00012s
QR 4.50e-22 0.00161s

As shown in Table 4, the financial problems have a great demand in the efficiency of the
algorithm in order to capture the opportunities to maximize the profits and avoid loss and need a
flexible analysis of the trends of the market. Considering that the covariance matrices are usually
well-conditioning and positive definite, it is an optimal choice to utilize the Cholesky
Decomposition as an approach.

4.3. Signal processing: moderate condition number designing matrix in filter

(1) Background
In signal denoising, the design matrix     may form moderate ill-condition problems due to the

redundant configuration of the sensors. The target is to compute the filter coefficient      requires
both the numerical stability and the instantaneity. The equation containing     where     is the
design matrix and     is the observed signal containing the noise [8,9].

(2) Experimental Design
Step1: Generate Moderate-conditioning Matrix:
Construct a matrix     by using the data to simulate the signal received by the sensors
Step2:Solution Methods:
Use QR decomposition and SVD decomposition to get the answers.
Step3: Evaluation Metrics:
The SNR improvement by the calculation.
Computation time.
(3) Results

Table 5. Results for signal processing applications

Method Relative Error Computation Times

SVD 1.03e-01 0.00124s
QR 9.99e-02 0.00876s

As shown in Table 5, for signal processing problems, there are small differences in error,
improvement, and computation times between the two approaches, and no numerical instability
issues occur for them. As a result, both of the algorithm can be applied in solving the equations of
signal processing.

5. Conclusion

In terms of numerical stability and computational efficiency, SVD decomposition performs best for
ill - conditioned problems and has the highest precision in solving least - square problems. However,
it has higher computational costs and is unable to obtain the answer instantaneously for high -
dimensional matrices because of its high computational complexity. QR decomposition offers a
balance between stability and efficiency. It can provide moderate numerical stability when facing ill

A
x

Ax = b A
b

A ∈ R
100×20



Proceedings	of	CONF-APMM	2025	Symposium:	Simulation	and	Theory	of	Differential-Integral	Equation	in	Applied	Physics
DOI:	10.54254/2753-8818/2025.DL26155

45

- conditioned problems and also has relatively higher computational efficiency. Cholesky
decomposition is the fastest for well-conditioned matrices with low computational complexity but is
sensitive to condition numbers and can only be restricted in solving the positive definite matrices.

As for the limitations of direct solving, Direct solving produces large errors for ill-conditioned
matrices and is not recommended due to the lack of orthogonality that can reduce the condition
number and easily to propagate significant errors in the multiplication and solving inverse.

This paper puts forward application recommendations, hich can meet the requirements of high-
precision : Prioritize SVD decomposition;For real-time computation: Use Cholesky decomposition
for well-conditioned problems and QR decomposition for ill-conditioned problems.
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