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Contextual multi-armed bandit (CMAB) algorithms have become a cornerstone of
modern recommendation systems owing to their ability to effectively manage the
exploration-exploitation trade-off in dynamic and uncertain environments. In this study, we
conducted a comprehensive empirical comparison of three advanced CMAB algorithms:
Double Explore-Then-Commit (DETC), Feel-Good Thompson Sampling (FG-TS), and
Multinomial Logit Upper Confidence Bound (MNL-UCB). Leveraging the MovieLens 1M
dataset, we constructed a realistic experimental setting by encoding detailed user profile
features, including demographic and behavioral attributes, and generating low-dimensional
movie embeddings using truncated singular value decomposition (SVD). We employed a
logistic regression framework that captures the probabilistic nature of user preferences. The
algorithms behaved markedly differently under long-term (10,000 rounds) and short-term
(200 rounds) recommendation scenarios. It indicates that MNL-UCB achieves the lowest
cumulative regret and shows strong performance stability across varying contexts in the
long-term experiment. And FG-TS demonstrates robust adaptability in highly dynamic
environments, making it particularly effective in scenarios with unpredictable behavior.
However, DETC tends to underperform in complex contextual settings because of its lack of
adaptability, leading to increased regret and fluctuating performance.

contextual bandit, Thompson Sampling, UCB, recommendation system, regret
analysis

In the era of information saturation, personalized recommendation systems have become important
tools across digital platforms. Whether in e-commerce, video streaming, or online news distribution,
these systems play a vital role in helping users navigate vast content spaces and boost user
engagement and platform profitability. The key algorithmic challenge, balancing exploration and
exploitation, is to discover potentially relevant new content (exploration) while leveraging known
user preferences (exploitation). It is difficult to manage especially under some environments, such as
data sparsity, shifting user interests, and frequent cold-start conditions.

To address this problem, CMAB algorithms are powerful and adaptive frameworks. Unlike
traditional multi-armed bandits, which treat all decisions in isolation, contextual multi-armed
bandits (CMABs) adopt a different approach. They incorporate contextual features, such as user
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demographics and item attributes, into the decision-making process. It enables personalized real-
time recommendations that adapt as more user interaction data become available. CMABs offer an
online learning paradigm that is well-suited to the demands of modern recommendation systems,
where models must be continuously updated in response to dynamic user behavior and partial
feedback (e.g., clicks, likes or ratings).

Over the last decade, various CMAB algorithms have been proposed based on different
theoretical principles. Explore-Then-Commit (ETC) algorithms first collect exploratory data, and
then commit to an empirically optimal option. Although they often incur high initial regret because
of the simple structure, they are still useful in some specific problem. In contrast, Upper Confidence
Bound (UCB) algorithms follow the principle of "optimism in the face of uncertainty," offering
strong theoretical guarantees and faster convergence in structured environments.And Thompson
Sampling (TS) adopts a Bayesian perspective and probabilistically samples arms in proportion to
their likelihood of being optimal, thus balancing exploration and exploitation.

Building on these foundational approaches, recent variants have improved adaptability to
complex real-world scenarios. The Feel-Good Thompson Sampling (FG-TS) integrates an optimism
bias into the TS framework to counteract sparse or adversarial feedback. Multinomial Logit UCB
(MNL-UCB) extends UCB strategies to multinomial logistic regression models, which better
represent discrete choice behavior typical in user selection scenarios. These advances have enabled
CMAB algorithms to handle high-dimensional contexts and noisy or non-stationary environments
more effectively.

Despite these theoretical developments, the practical performance of CMAB algorithms remains
inconsistent across tasks and datasets. Many existing studies emphasize theoretical regret bounds or
synthetic benchmarks, whereas real-world empirical evaluations are limited. Crucially, trade-offs
among key concerns such as regret minimization, computational cost, algorithmic stability, and
cold-start adaptability have yet to be systematically investigated within a unified, reproducible
framework.

To bridge this gap, this study conducts a rigorous empirical comparison of three state-of-the-art
CMAB algorithms: Double Explore-Then-Commit (DETC), FG-TS, and MNL-UCB. Experiments
were performed on the widely used MovieLens 1M dataset, which contains rich user profile
information and extensive interaction data for thousands of movies. The diversity and realism of this
dataset make it an ideal testbed for evaluating contextual bandit algorithms under both short-term
(200 rounds) and long-term (10,000 rounds) interaction scenarios.

This study has three core objectives. First, it develops a realistic contextual simulation framework
that combines one-hot-encoded user attributes with low-dimensional movie embeddings generated
via truncated singular value decomposition (SVD) and uses a logistic regression model to simulate
probabilistic reward feedback. Second, it conducts a comprehensive quantitative assessment of
algorithmic performance by measuring cumulative regret across short- and long-term interaction
horizons. Third, it offers a preliminary examination of the strengths, limitations, and deployment
tradeoffs of each algorithm. The goal is to provide useful insights for academic researchers and
industry practitioners when considering CMAB strategies for recommendation systems.

In the last few years, a lot of progress has been made in creating CMAB algorithms based on the
basic ideas behind ETC, UCB, and TS. By using contextual information, these algorithms do a great
job of balancing exploration and exploitation. They make big improvements in both the theoretical
regret bounds and the empirical performance in a wide range of settings. Beygelzimer et al. were the
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first to add context to the ETC framework and create an adaptive exploration strategy with
supervised learning guarantees [1]. They were the first to do this. At the same time, Chu et al. came
up with LinUCB, which assumes a linear relationship between context and reward and chooses
actions based on upper confidence intervals [2]. Around the same time, Slivkins suggested a
similarity-based contextual bandit method that uses similarity metrics to adaptively divide the
context space in order to improve performance in difficult situations [3].

There have also been big theoretical advances in UCB-based contextual bandit methods. Agrawal
and Goyal added linear contextual settings to the UCB and found almost the best regret bounds [4].
Later, Li et al. expanded these findings to generalized linear bandits (GLBs), adding nonlinear link
functions and creating algorithms that are provably optimal with strict guarantees [5]. Agarwal et al.
came up with ILOVETOCONBANDITS, a sampling-based algorithm that optimizes policy
distributions over arbitrary function classes [6]. This was done to solve computational problems
while keeping statistical efficiency. Zhou et al. built on this work to create NeuralUCB, which uses
deep neural networks to model complex nonlinear contexts and random feature mappings to create
confidence bounds. The results were very good in practice and backed up by theory [7].

TS has also been a big part of research on contextual bandits. Riquelme et al. came up with Deep
Bayesian Bandits by combining variational inference with Bayesian neural networks. They showed
that it worked well in a number of benchmark environments [8]. This was further developed by
Zahavy and Mannor, who proposed Deep Neural Linear Bandits, which mitigate catastrophic
forgetting by combining deep feature extraction with Bayesian linear models on the output layer [9].
In order to align frequentist regret bounds with their Bayesian counterparts, even in adversarial
environments, Zhang developed FG-TS, which incorporates an optimism bias [10].

Structural and parametric complexities of contextual bandits have been addressed by recent
studies. Uehara et al. explored representation learning in low-rank Markov Decision Processes
(MDPs) and proposed REP-UCB to enhance sample and computational efficiency in both online and
offline reinforcement learning [11]. In the same year, Amani and Thrampoulidis developed the
MNL-UCB, extending UCB strategies to multinomial logistic regression bandits, effectively
addressing multi-class discrete feedback while maintaining sublinear regret [12]. Meanwhile, the
ETC paradigm has witnessed renewed interest; Jin et al. proposed the DETC and introduced a four-
phase exploration-exploitation cycle that achieves asymptotically optimal regret in non-fully
sequential settings for the first time [13]. Moreover, Whitehouse et al. revisited kernel and Gaussian
Process (GP)-based models, demonstrating that GP-UCB with appropriate regularization attains
sublinear regret in environments with polynomial eigenvalue decay, thus extending UCB methods to
rich function spaces with theoretical robustness [14].

Collectively, these developments illustrate the evolution of CMAB algorithms from early linear
models to sophisticated frameworks incorporating deep learning and kernel methods, demonstrating
a rich interplay between theoretical advancements and practical algorithm design. However, despite
significant theoretical progress, existing studies have largely focused on regret bounds or
simulations under synthetic conditions, leaving a notable gap in empirical evaluations of real-world
recommendation tasks. Specifically, comparative studies systematically examining the trade-offs
between regret minimization, adaptability to contextual complexity, and computational efficiency
across multiple algorithms are limited. Furthermore, the practical implications of algorithmic
choices under different interaction horizons, such as short-term versus long-term user engagement,
have not been sufficiently explored.

To address these gaps, this study provides a comprehensive empirical comparison of three
representative CMAB algorithms—DETC, FG-TS, and MNL-UCB—using the widely adopted
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MovieLens 1M dataset. By integrating realistic contextual modeling, including user profile encoding
and movie embeddings via truncated SVD, with a logistic regression-based reward simulator, we
constructed a robust experimental framework that mirrors real-world recommendation
environments. Through a systematic evaluation under both short- and long-term interaction
scenarios, this study not only benchmarks algorithmic performance using cumulative regret but also
highlights the strengths, weaknesses, and application trade-offs of each method.

3. Methods

This section presents the three contextual bandit algorithms employed in this study: DETC, FG-TS,
and MNL-UCB. Each method is designed to balance the exploration-exploitation trade-off through
distinct mathematical frameworks and inference strategies. We describe their theoretical basis,
decision rules, and practical implications in recommendation systems. Table 1 briefly summarizes
the differences between the three algorithms.

Table 1. Summary of methodological distinctions

Algor-ithm Type Strength Limitation
DETC Freque-ntist Simple and fast Lacks adaptivity
FG-TS Bayesi-an Balances prior and data, good for uncert-ainty Sensitive to hyperparam-eters
MNL-UCB Model-based UCB Strong in ranking tasks Computatio-nally expensive

3.1. Double Explore-Then-Commit (DETC)

DETC is a two-stage algorithm that first explores each arm uniformly and then commits to the arm

with the highest estimated mean reward. It is simple and computationally efficient, making it ideal

for environments with stable reward distributions. However, it lacks adaptivity in dynamic contexts.
Mathematically, the estimated reward for arm a after n. exploration rounds is:

fia = (1/ne) Y ettty 1)

The selected arm is:
a* = argmaxXa [la (2)

Pseudocode:
Input: Number of arms K, total horizon T,
exploration steps n.

for a = 1 to K:
for 1 = 1 to ne:
Pull arm a, observe reward r {a,i}
Compute p"a = (1/ne) * sum r {a,i}

Select a* = argmax i af
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or t = K * ne + 1 to T:

Pull arm a*

3.2. Feel-Good Thompson Sampling (FG-TS)

FG-TS is a Bayesian approach that uses posterior sampling to select arms. It introduces a scaling
parameter § € (0,1] to amplify uncertainty in the posterior variance, promoting optimistic
exploration. This is particularly effective in sparse-feedback or cold-start settings.

Mathematically, the posterior of arm a is:

0a ~ N(0a, Za) 3)
With feel-good scaling:
Ba ~ N(6a, Xa / B) 4)
The arm selected at round t is:
at = argmaxa Xt' Ba (5)

With updates:
Aa +— Aa + xext',
ba  ba + rtxt, (6)
Ba = Aa71ba
Pseudocode:

Input: Number of arms K, context dimension d, scaling parameter [3

Initialize for each arm a:

Aa =1 d, ba =04d

for t =1 to T:

Observe context xt

for each arm a:

Compute 672 = Aa"?' ba

Ya = 0% Aa"?

Sample 62 ~ N(6%a, Za / B)
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Compute score pa = xtT 0.
Select at = argmaxa pPa
Pull arm at and observe rt

Update Aa. and ba accordingly
3.3. Multinomial Logit Upper Confidence Bound (MNL-UCB)

MNL-UCB combines an upper confidence bound framework with a multinomial logit model. It uses

both estimated utility and uncertainty to select arms and probabilistically models user choices. This

approach performs well in environments with discrete choices and personalized rankings.
Mathematically, the choice probability is:

P(a ‘ Xt> = exp (XtT Oa) / Zj exp (XtT Gj) (7)

The UCB score for arm a is:

UCBa = xt'0a + o \/(XtT Vat Xt) (8)
With updates:
Va < Va + xtxt',
ba < ba + rtxt, 9)
0a = Valba
Pseudocode:

Input: Number of arms K, context dimension d, exploration parameter o

Initialize for each arm a:

Va =Id, ba=04d, 67a =04d

for t =1 to T:

Observe context xt

for each arm a:

Compute UCBa = xtT 672 + o
N (xtT Va~1 xt)

Select at = argmaxa UCBa

Pull arm at, observe rt
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Update Va, ba, 67a

This chapter describes the experimental framework designed to evaluate the effectiveness of specific
contextual multi-armed bandit (CMAB) algorithms in a controlled simulation environment. The
experiment attempted to replicate realistic user-item interactions while maintaining methodological
rigor and reproducibility by utilizing the MovieLens 1M dataset.

The MovieLens 1M dataset, which comprises approximately one million ratings from 6,000 users on
4,000 films, was used in the experiment. The contextual bandit environment was built using three
data files: ratings.dat, users.dat, and movies.dat. To create user context vectors, one-hot encoding
was used to create fixed-length representations of categorical user profile attributes, such as gender,
age, and occupation. To capture collaborative signals among movies and facilitate efficient
generalization within the contextual bandit framework, we built a user-movie rating matrix and used
Truncated Singular Value Decomposition (SVD) to extract low-dimensional latent embeddings for
movie features. To simulate user feedback, a binary classification reward model was built: each
user-movie-rating triplet was labeled positive if the rating was 4 or higher. The final feature vector
was formed by concatenating the one-hot encoded user vector with the movie embedding. A logistic
regression model was trained on 80% of the data (using train_test split), with the remaining 20%
reserved for validation. During the simulation, this logistic regression model acts as a stochastic
oracle, where the predicted probability of a user-movie pair serves as the success probability for
Bernoulli reward generation.

The key parameter settings of the experiment are outlined below, along with the rationale for each
choice, which aims to ensure both practical realism and methodological clarity.

Contextual Feature Dimensions: User features were encoded via one-hot encoding of gender (two
categories), age group (seven bins), and occupation (21 roles), resulting in a 30-dimensional user
context vector. Movie features are represented using a 20-dimensional latent embedding obtained
from the truncated SVD on the user-movie rating matrix. By concatenating the user and movie
vectors, each interaction context forms a 50-dimensional feature vector. This setup strikes a balance
between expressive power and computational efficiency, capturing the interactions between user
preferences and movie content representations.

Simulator Configuration: The candidate arms consisted of 10 randomly selected movies chosen to
maintain experimental control while keeping the computational cost manageable. All users from the
dataset were included to simulate both cold-start and warm-start conditions. Reward feedback is
generated using Bernoulli sampling based on the predicted click probabilities from the trained
reward model, thereby mimicking the binary feedback (click vs. no click) commonly observed in
real-world recommendation systems while also introducing realistic noise.

Bandit Algorithm Settings:

DETC: In a setting with only 10 arms, the exploration phase is set up with five rounds per arm,
which guarantees a sufficient number of initial observations to support trustworthy commitment
decisions while limiting the exploration overhead.
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FG-TS: TS is implemented using Gaussian priors with added covariance regularization, enabling
approximate posterior sampling in high-dimensional contexts while maintaining numerical stability.

MNL-UCB: A moderate degree of optimism was indicated by the confidence bound scaling
parameter, which was set to a = 1.0. This prevents unduly drastic departures from the estimated
means and encourages a fair trade-off between exploration and exploitation of the data.

Simulation Configuration: Each algorithm was run for 10,000 rounds to evaluate its long-term
performance. To reduce the impact of stochastic variance, each configuration was repeated over 10
independent trials. The mean and standard deviation of cumulative regret across trials were then
computed for analysis. This design ensures both robustness and computational feasibility,
facilitating a reliable comparison among the algorithms.

In summary, the parameter settings were carefully chosen to reflect practical recommendation
scenarios while maintaining consistency and reproducibility across experiments. They support the
fair evaluation of exploration-exploitation trade-offs in complex contextual conditions.

4.3. Experimental procedures
The experiment is conducted according to the following steps:

epetition
Simulator Regret Repetitio
and
Construction Calculation o
Averaging

A

"

Context

ampling s Algorith
Sampling and - gon .m Visualization [
Reward Execution

Generation

Figure 1. Experimental flow chart

As the Figurel, the Experimental flow chart, shows that first, a simulator is constructed using the
trained reward model. At each interaction round, a user is uniformly sampled from the user set. The
context is then formed by combining the one-hot encoded profile of the selected user with the
embeddings of the candidate movies.

For each round, the simulator evaluates all candidate movie arms by computing the predicted
probability of receiving a positive reward under the current context. A Bernoulli reward is then
sampled for each arm based on its predicted probability, thereby simulating the user’s click behavior.

For each contextual bandit algorithm, the following loop is executed: the algorithm selects an arm
based on the current context, observes the corresponding reward, and updates its internal estimates
or posterior distribution accordingly. The instantaneous regret at each round is defined as the
difference between the highest predicted reward probability and the probability of the selected arm.
These values are accumulated to compute the cumulative regret over time.

To account for stochastic variability, each experiment is independently repeated 10 times. The
mean and standard deviation of cumulative regret are then calculated. The results are visualized by
plotting cumulative regret trajectories with shaded confidence intervals, enabling a comparative
evaluation of algorithmic performance across rounds.
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5. Result & discuss

This chapter provides a systematic evaluation of three CMAB algorithms—DETC, FG-TS, and
MNL-UCB—on the MovieLens dataset for recommendation tasks. The experiments were designed
under two settings: long-term (10, 000 rounds) and short-term (200 rounds) interactions. The
primary performance metric is cumulative regret, which reflects the gap between the chosen and
optimal actions in each round.

FG-TS
MNL-UCB

2000
1500

1000 o

Cumulative Regret
\
\

o 2000 4000 6000 8000 10000
Rounds

Figure 2. Experimental graphics(10000 rounds)

Figure 2 illustrates the cumulative regret curves for long-term interaction scenarios. The results
show that DETC performs reasonably well in the early rounds but experiences a rapid increase in
regret as the number of interactions increases, eventually exceeding 1200. Moreover, its wide
confidence interval indicates high instability in the trials. FG-TS outperforms DETC by maintaining
a cumulative regret of approximately 800, with a smooth curve and moderate growth rate, reflecting
better convergence and stability. MNL-UCB achieves the lowest regret across all rounds, stabilizes
below 600, and exhibits the narrowest confidence band, demonstrating strong robustness and
consistency.

Cumulative Regret Comparison with Confidence Intervals

Cumulative Regret

0 .} 50 s 100 125 150 175 200
Rounds

Figure 3. Experimental graphics(200 rounds)

Figure 3 presents the results of the short-term recommendation scenario of 200 rounds. During
the first 50 rounds, the regret of all three algorithms increased linearly and remained comparable.
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However, performance differences became evident in the later stages. The DETC accumulated regret
rapidly during exploration, followed by slower growth, achieving the best performance with a final
regret of approximately 50. FG-TS maintained a constant regret growth. It performed slightly worse
than DETC but still better than MNL-UCB. However, MNL-UCB showed the highest cumulative
regret, which was completely different from the long-term results.

Further analysis revealed that the exploration-exploitation strategy is the key determinant of
performance. The DETC follows a hard-switching approach by conducting a fixed number of initial
explorations before committing fully to the estimated best arm. While this can work under ideal
conditions, such as large differences in true arm expectations and low early estimation error, in
practice, the complexity of contextual features and noisy feedback may lead to misidentification of
the optimal arm early on, resulting in persistent regret accumulation. This highlights that fixed
exploration phases are ill-suited for real-world systems, and that soft switching or gradual
commitment strategies may be more appropriate.

In contrast, Bayesian posterior sampling helps the FG-TS balance exploration and exploitation in
each round. An arm may be assigned a high-sampled value when its level of uncertainty is high,
which promotes exploration. However, fewer samples were obtained from arms with low
uncertainty. Owing to this mechanism, FG-TS can effectively adjust to contextual drift, sparse data,
and cold-start users, making it especially effective in dynamic environments.

The MNL-UCB conducts a confidence-bound approach which is comparable to the optimistic
exploration of classical machine learning. It favors understudied and promising arms in the selection
process of the best-performing arms. This mechanism provides strong robustness and fast
convergence, and performs well under structured environments with stable and interpretable
contexts. However, it might converge too soon to less-than-ideal solutions in the early stages or
when the data are skewed.

Runtime efficiency and implementation complexity must be considered when deploying a
system. The DETC is appropriate for situations with stringent latency constraints because it has the
simplest structure and the lowest computational cost. In contrast, matrix updates and sampling or
inversion operations are used in FG-TS and MNL-UCB, which could lead to performance snags in
large-scale systems. By giving uncertain arms priority and quickly adjusting to new users or items,
FG-TS naturally excels at solving cold-start issues. MNL-UCB is better suited for established
systems with established patterns than MNL because it has fewer parameters, is easier to tune, and
has better interpretability.

The current implementation of reward modeling makes use of logistic regression, which is
straightforward and easy to understand but might not have the necessary expressive power.
Nonlinear and higher-order interactions frequently control click behavior in the real world. To more
accurately predict user behavior, future research should take into account using nonlinear models,
such as generalized additive models (GAMs) or multi-layer perceptrons (MLPs). Furthermore, the
current model does not explicitly model user-item interaction effects; instead, it simply concatenates
user features and movie SVD embeddings. The simulator's realism could be improved by using
sophisticated architectures like factorization machines, attention-based models, or neural interaction
layers.

In summary, the MNL-UCB performs best in the long run and works well with systems that are
stable and well-structured. In dynamic and wunpredictable environments, FG-TS performs
exceptionally well, particularly in cold-start or short-term scenarios. Despite its computational
efficiency, DETC has stability issues in intricate situations. By weighing theoretical guarantees,
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system requirements, and practical performance, these findings provide useful suggestions for
selecting suitable contextual bandit algorithms for real-world recommendation systems.

Using the MovieLens 1M dataset, we conducted a thorough empirical evaluation of three
representative CMAB algorithms: DETC, FG-TS, and MNL-UCB. The evaluation was conducted in
a realistic recommendation environment. Cumulative regret was used as the main performance
metric in the experiments conducted under both short-term (200 rounds) and long-term (10,000
rounds) interaction horizons. According to the results, MNL-UCB is best suited to structured, stable
environments because it continuously achieves the lowest cumulative regret and shows high
stability. Through Bayesian posterior sampling, FG-TS demonstrated a robust performance in
dynamic or uncertain scenarios, quickly adjusting to new users or items. Although DETC is
computationally efficient, its rigid exploration strategy makes it less robust in complex or noisy
contexts. These findings highlight the critical trade-offs between simplicity, adaptability, and
statistical efficiency in real-world CMAB deployments. Additionally, this study contributes a
reproducible experimental framework that integrates user profiles and movie embeddings into a
logistic reward model, offering practical suggestions for algorithm benchmarking and selection in
future studies.

Despite these contributions, several limitations of this study must be acknowledged. The
assumption of a static context and a fixed item pool does not reflect the dynamic, feedback-driven
nature of real-world systems. Future studies should incorporate context drift and temporal feedback
to improve realism. The restricted arm set (10 movies) limits the scalability evaluation; expanding to
thousands of items would better mirror industrial-scale recommendation settings. Furthermore, the
current reward model relies on logistic regression, which may oversimplify user-item interactions by
failing to capture nonlinear or higher-order dependencies. Evaluation metrics are also limited to
cumulative regret, omitting business-relevant indicators such as the click-through rate (CTR),
coverage, diversity, and ranking quality (e.g., NDCG, MAP). Future research should explore more
expressive reward models (e.g., neural networks or attention-based architectures), simulate realistic
user dynamics, scale up candidate pools, and incorporate broader evaluation metrics to support more
holistic and actionable assessments of the proposed method. In summary, this study offers both
empirical insights and methodological tools for advancing CMAB research and informing real-
world recommendation system design.
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