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With the advancement of artificial intelligence technologies, autonomous vehicles
are progressively emerging as a transformative transportation solution. However, decision-
making complexities and dynamic interaction challenges in complex environments continue
to impede the realization of fully autonomous driving. As an emerging paradigm, Multi-
Agent Reinforcement Learning (MARL) offers an innovative perspective to address these
challenges. This paper provides a systematic review of recent research advancements in
MARL applications for automated parking: beginning with an exposition of the technical
foundations of automated parking and MARL theoretical principles; proceeding to a detailed
analysis of core algorithmic implementation mechanisms—including Q-learning and Deep
Q-Networks (DQN)—and their specific applications in parking path planning; subsequently
synthesizing mainstream metric systems for performance evaluation; and concluding with an
examination of critical challenges such as learning efficiency and safety limitations,
alongside prospective research directions. This review aims to clarify developmental
trajectories within the field while highlighting MARL's significant potential for constructing
intelligent, high-efficiency automated parking solutions.

Automated Parking, Path Planning, Multi-Agent Reinforcement Learning
(MARL), Deep Reinforcement Learning.

Automated parking technology stands as a significant subfield within autonomous driving and has
emerged as a key research area in recent years [1]. The technology relies on sensors and tracking
systems to identify viable parking spaces and subsequently plan an optimal vehicle trajectory. The
necessity for advancing this technology is underscored by the projection that future transportation
systems will incorporate fully autonomous vehicles. Presently, semi-autonomous features are
already prevalent, and a higher degree of vehicle autonomy is anticipated in the near future. The
foundational ambition of autonomous driving is to establish a coordinated, interconnected traffic
ecosystem that enhances safety and reduces travel time. Within this context, automated parking
addresses a critical and high-demand practical need [2]. The annual increase in vehicle ownership
has intensified parking congestion, especially in high-traffic locations like hospitals and tourist
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destinations. Consequently, substantial investment in both time and technological development for
automated parking remains essential [3].

The application of Reinforcement Learning (RL) to Multi-Agent Systems (MAS) has given rise
to Multi-Agent Reinforcement Learning (MARL). At its core, MARL investigates how multiple
agents can effectively accomplish tasks through interaction and cooperation, thereby improving their
collective capabilities. Within the MAS framework, individual agents operate with distinct states,
actions, and reward functions, working collaboratively toward a shared objective [4]. This
introduces complex aspects absent in single-agent reinforcement learning, as multi-agent
reinforcement learning must account for dynamic interactions and mutual influences among agents.
Within multi-agent reinforcement learning environments, agents may employ diverse strategies,
such as cooperation, competition, or coordination—which can be either learned through experience
or derived from predefined rules to achieve globally optimal solutions.

The automated parking technology process is primarily divided into two aspects: the perception
aspect and the path planning aspect. The perception aspect mainly constructs environmental
representations through hardware equipment such as sensors; enhancement relies on hardware
enhancement. The planning aspect is based on how to compute optimal vehicle trajectories. This
process fundamentally belongs to an algorithm optimization problem. Within the path planning
aspect, Multi-Agent Reinforcement Learning (MARL) is one prominent area receiving considerable
attention from the research community in recent years. It primarily aims to achieve globally optimal
paths. Over the past few decades, the research community has developed various MARL
methodological frameworks. MARL has precisely evolved step by step based on these foundational
aspects.
Figure 1 shows the chronological progression of the relevant technological developments.

n & Foundational Theory Tech Maturation & Application Intelligence & Integration
000) (2000 0) (2010 to 2017)

Figure 1. Development timeline of multi-agent reinforcement learning methodologies [4]

Multi-agent reinforcement learning algorithms have been applied multiple times in automated
parking path planning. As one of the core operational components of automated parking, the
methodological system of path planning has evolved from geometry-based rule-driven approaches to
learning-based paradigms. Compared with traditional schemes that directly apply algorithms such as
A* (these algorithms struggle to simulate human parking behavior in complex environments),
reinforcement learning (RL) enhances the generation capability of potential paths through
autonomous learning mechanisms [5]. Reinforcement learning effectively resolves these limitations
by enabling agents to be able to learn optimal paths through direct interaction with the environment.
The subsequent emergence of Q-learning represents a foundational advancement in RL
methodologies. As a core algorithmic framework, Q-learning employs a Q-value table (Q-table) to
store expected rewards for state-action pairs. Through iterative updates to this table, agents
progressively converge toward optimal policies [6]. Nevertheless, Q-learning exhibits significant
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limitations when confronted with the high-dimensional state spaces characteristic of real-world
operational environments.

To address this, deep learning has been integrated with RL, leading to the development of Deep
Q-Networks (DQN). DQN replaces the Q-table with a deep neural network to approximate the Q-
value function, enabling it to handle complex, high-dimensional inputs such as images from a
camera [7]. DQN also introduces an experience replay mechanism, which stores past transitions in a
memory buffer and samples from it randomly during training. This breaks the correlation between
consecutive samples and stabilizes the learning process. These model-free approaches are popular;
however, Model-Based Reinforcement Learning (MBRL), where the agent first learns a model of
the environment's dynamics, also exists and can be combined with model-free methods to improve
sample efficiency [8].

Researchers have developed specialized MARL frameworks to tackle the unique challenges of
automated parking, such as collision avoidance and efficient coordination. These approaches are
demonstrated in several key studies:

To manage a fleet of vehicles in an automated valet system, some studies employ a Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) algorithm. The reward function in these models is
typically designed to penalize collisions and long parking times, successfully improving both
parking efficiency and the overall success rate compared to non-cooperative methods. A similar
MADDPG model, using centralized training and decentralized execution, has also been applied to
solve complex multi-agent path planning for ships and aircraft carriers [9]. To address congestion at
entry and exit points, Nishio et al. developed a decentralized cooperation mechanism where each
vehicle acts as a DQN agent [10]. A key innovation was a shared "experience" mechanism that
allowed agents to learn from the trajectories of others, significantly reducing average waiting and
parking times.

For the congestion problem at entry and exit points, Nishio et al. applied a decentralized
cooperation mechanism where each vehicle operates as a DQN [10]. It allows agents to learn from
the trajectories of other vehicles, significantly reducing the average waiting and parking times.

Unlike the method that directly applies multi-agent reinforcement learning. Also there are
improved versions of traditional algorithms, the hybrid application of traditional algorithms with
modern new technologies. Its effect also shows advantages. The research community also pays
attention to the combination of traditional algorithms and modern control. The HOPE planner
proposed by JiangLi's team combines classical geometric algorithms with deep reinforcement
learning strategies, mainly applying the mechanism of action mask to overcome the problem that
geometric methods cannot adapt in complex environments. It achieved extremely high data in
parking success rate [11]. Similarly, Zhu et al. through the integration of Hybrid A* algorithm and
Model Predictive Control (MPC), the MPC control algorithm provides future state information and
real-time output of chassis control parameters, ensuring the vehicle completes the automated parking
task along the dynamically calculated path, significantly improving path planning accuracy
compared to traditional methods [2].

Reinforcement Learning (RL) also has applications in long-distance searching for optimal
parking spaces. For example, Khalid et al. proposed the RL-LAVP algorithm—this reinforcement
learning algorithm is specially used to guide vehicles to optimal parking locations [12]. Their
algorithm increases the search distance while reducing energy consumption. It has an effective
solution for the problem of tight parking spaces in urban areas.
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3. Mainstream evaluation metrics

The evaluation of automated parking systems is a multi-faceted process that requires a
comprehensive set of metrics. These standards can be broadly categorized into three main areas
functional performance, safety, and user experience.

3.1. Functional performance

This dimension evaluates the system's core capability to efficiently complete parking tasks. Key
metrics include:Parking Space Recognition Rate: Quantifies the system's accuracy in detecting and
classifying various parking spaces [13]. Parking Success Rate: Defined as the ratio of successful
parking attempts, including statistics on trajectory adjustment counts.Pose Accuracy: Assesses the
precision of the vehicle's final pose, with emphasis on:Lateral deviation (distance from the ideal
centerline)Angular yaw differenceEfficiency: Measured through the following parameters:Task
completion time (from initiation to parking completion)Planned path smoothness [5]. This structured
translation maintains academic rigor, ensures technical terminology consistency, and adheres to
standard research formatting conventions.

3.2. Safety

Safety is the most critical aspect of any autonomous function. Evaluation metrics focus on the
system's ability to operate without causing collisions. This includes the Emergency Braking and
Obstacle Avoidance capability, which assesses responsiveness to sudden obstacles. In MARL
simulations, this is often quantified by the collision rate among agents. Minimum Clearance Control
measures the ability to maintain a safe distance from all surrounding obstacles, a parameter heavily
dependent on sensor precision [14]. Another important factor is the Self-Recovery Capability, which
is the system's ability to resume the parking process automatically after a temporary interruption,
such as resolving a deadlock situation between two or more vehicles.

3.3. User experience

This dimension measures how intuitive, comfortable, and trustworthy the system is from the driver's
perspective. Interaction Convenience refers to the ease of activating and monitoring the function
through interfaces like touchscreens or voice commands. Ride Comfort is determined by the
smoothness of the vehicle's motion, including controlled acceleration, deceleration, and steering to
avoid abrupt movements [15]. The Level of Automation is also crucial, ranging from L2 systems
requiring driver supervision to L4 systems that offer fully autonomous, "mind-off" operation, which
directly impacts the user's trust and cognitive load.

4. Existing limitations and future outlook

Despite the significant progress in applying MARL to automated parking, several formidable
challenges remain that must be addressed to enable widespread, reliable deployment. These
challenges span learning efficiency, environmental complexity, and the socio-technical aspects of
trust and safety.One of the most significant hurdles is learning efficiency. MARL algorithms often
require a vast amount of training data and computational resources to converge to an effective
policy.This is because the learning process of other agents causes each agent's decision-making to
continuously evolve, forming a dynamic learning environment. The sample inefficiency of many
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reinforcement learning (RL) algorithms means that training in real-world complex scenarios is often
impractical and potentially hazardous.

Closely related is the challenge of learning in complex environments. In multi-agent settings,
from the perspective of any individual agent, the environment is complex because the policies of
other agents are constantly changing during the learning process. This violates the stationarity
assumption inherent in traditional reinforcement learning algorithms, leading to unstable learning
dynamics [16]. Algorithms capable of effectively modeling and adapting to the behaviors of other
agents—such as those based on opponent modeling or the centralized training with decentralized
execution (CTDE) paradigm—are a key focus of current research [17]. Another critical issue is the
lack of explainability. Most advanced Multi-Agent Reinforcement Learning (MARL) models,
particularly those based on deep neural networks, operate as "black boxes," making it extremely
difficult to interpret the rationale behind an agent's specific decision at a given moment. This lack of
transparency poses a significant barrier to certification procedures and public trust, especially in
safety-critical applications such as autonomous driving. Understanding the behavioral logic of a
MARL-based parking system is crucial if it fails. Developing Explainable Al (XAI) methods
specifically tailored to MARL systems represents an important future research direction [18].

Furthermore, the safety of learning-based agent systems is also a concern. Formal verification
methods and techniques for certifying the safety of learning-based systems are required to guarantee
that agents will not take unsafe actions. Future research will likely involve integrating learning-
based approaches with traditional rule-based safety controllers to provide a robust safety net.

This article details the application of multi-agent reinforcement learning in automated parking. It is
divided into two types: one introduces applications in path planning, the other introduces
applications in long-distance parking space search. It then explains fundamental principles and
developmental progression, starting from the most primitive geometric algorithms, gradually
progressing to the A* algorithm, then to ordinary reinforcement learning (Q-learning), and further to
current multi-agent reinforcement learning. It describes deficiencies of original algorithms.
Nevertheless, some researchers combine traditional algorithms with modern technologies, achieving
favorable outcomes using hybrid approaches. Subsequently, it introduces evaluation criteria for
parking systems and existing challenges, such as insufficient learning efficiency and urgent demand
for safety robustness. These limitations indicate core directions for future research. Regarding path
planning, the research community still needs to focus on developing algorithms with higher sample
efficiency, constructing interpretable and verifiable models, and designing robust safety protocols
capable of handling unknown edge cases. In conclusion, the exploration of MARL in automated
parking still remains filled with many unknowns, requiring diligent efforts from researchers to drive
change.
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