Proceedings of ICBioMed 2025 Symposium: Computational Modelling and Simulation for Biology and Medicine
DOI: 10.54254/2753-8818/2025.L.D26351

Efficient K-mer Processing in Genomics: Challenges and
Innovations with Python and Greedy Algorithms

Mengyi Zhang

University of Utah, Salt Lake City, USA
zhangmengyi2(023@outlook.com

K-mer analysis is a core technology in bioinformatics, widely used in genome
assembly, variant detection, and metagenomic research. With the exponential growth of
sequencing data, efficiently processing massive k-mer datasets imposes higher demands on
computational performance, memory usage, and system scalability. This paper focuses on
implementing k-mer analysis in Python environments, exploring its key challenges in
algorithmic efficiency and resource management. Python-based workflows demonstrate
strong performance in data compression, graph structure simplification, and feature
extraction by incorporating greedy strategies, sorting optimisations, parallel computing, and
deep learning methods. With GPU acceleration and cloud platform deployment, this
technical approach exhibits potential for scaling to petabyte-scale genomic datasets, making
it suitable for high-throughput bioinformatics tasks across multiple scenarios. This
methodology not only addresses current computational needs but also provides a reference
for the development of bioinformatics computational models.

K-mer analysis, bioinformatics, Python, greedy algorithms, genome assembly

K-mer analysis is central to genome assembly, metagenomics, and variant detection. A k-mer refers
to a substring of length k derived from DNA or RNA sequences, and analyzing its frequency and
distribution can reveal genomic structure and function. However, the surge in sequencing data has
heightened computational performance requirements, driving the need for more efficient algorithms.

Python is widely used for k-mer analysis in various programming languages due to its concise
syntax, rich library resources, and strong compatibility with machine learning. Compared to
traditional implementations in C++ or Java, Python facilitates rapid development and integration of
bioinformatics tools. Meanwhile, greedy algorithms, which achieve fast, approximate optimal
solutions at lower computational costs, are increasingly applied in k-mer processing. This article
explores the current state of Python's application in k-mer analysis, computational challenges, and
the latest advancements in greedy algorithms. It also envisions its optimization potential in large-
scale genomic research.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

1



Proceedings of ICBioMed 2025 Symposium: Computational Modelling and Simulation for Biology and Medicine
DOI: 10.54254/2753-8818/2025.LD26351

K-mer analysis represents a fundamental methodology within bioinformatics, finding broad
application across diverse contexts, including but not limited to genome assembly, variant
identification, metagenomic studies, and the correction of sequencing errors. With the development
of second- and third-generation sequencing technologies, Next-generation sequencing (NGS) has
become a crucial tool in genomic research, producing millions to billions of nucleotides in a single
run, providing foundational support for high-throughput assembly [1]. While NGS is the cornerstone
in assembly, k-mer-based de Bruijn graph algorithms can efficiently construct sequence graphs and
reconstruct genome structures. The sorting-optimized distributed-memory k-mer counter HySortK
significantly reduces memory usage and improves processing efficiency, demonstrating excellent
performance in practical large-scale k-mer datasets [2].

In variant detection, Jellyfish leverages lock-free hashing and parallel optimization to rapidly
count k-mer frequencies under high coverage, providing high-coverage k-mer counts that underpin
downstream variant calling and quality control [3]. Within Python workflows, k-mer toolkits (e.g.,
khmer) together with the scientific stack (NumPy/Scikit-learn) enable principal component analysis
(PCA) on k-mer frequency vectors, which can be used to explore separations among taxa or contigs
in practice.

In metagenomic classification, MT-MAG employs alignment-free k-mer frequency and
hierarchical taxonomic structures, combined with a confidence prediction mechanism, to effectively
support the complete or partial classification of microbial assembled genomes (MAGs) in
environmental samples. It achieves up to 87.32% weighted classification accuracy across multiple
test datasets and can partially classify the remaining 27% of sequences, achieving an overall
adequate classification coverage of approximately 95.13% [4]. Recent studies demonstrate that k-
mer frequency spectra vary markedly among taxa, with tetrapod genomes—such as those of
mammals—frequently presenting multimodal distributions, in contrast to the predominantly
unimodal patterns observed in bacterial genomes [5]. These modal structures provide identifiable
patterns for representation learning; within Python-based pipelines, k-mer—tokenizing models (e.g.,
DNABERT) and metagenomic taxonomic classifiers leveraging k-mer encodings (e.g.,
DeepMicrobes) capitalize on this structure and report strong performance in microbiome
classification [6, 7]. Additionally, sparsity-exploiting k-mer—based estimation methods (e.g., SEK)
formalize community-composition inference as a constrained sparse-recovery problem which is
using windowed k-mer statistics with non-negativity/normalization constraints and OMP-based
solvers :thereby offering methodological guidance for modeling and tool choices [8]. As a three-
stage feedforward greedy algorithm, the GTCA (Greedy Target Controllability Algorithm) satisfies
Kalman controllability conditions through progressive driver node selection and achieves efficient
and stable target control in complex networks [9]. Its modeling strategy for minimal control sets in
biological systems offers structured inspiration for anomaly detection and stability control in
sequencing error correction workflows.

Greedy algorithms are widely adopted in graph computation, path optimization, and network control
due to their strong locality, low computational overhead, and ease of implementation. For example,
in addressing target controllability challenges, the GTCA algorithm utilizes a three-phase localized
greedy approach to iteratively identify driver nodes that satisfy Kalman controllability criteria,



Proceedings of ICBioMed 2025 Symposium: Computational Modelling and Simulation for Biology and Medicine
DOI: 10.54254/2753-8818/2025.LD26351

thereby exhibiting both computational efficiency and scalability within intricate biological network
systems [9].

Similarly, greedy algorithms are extensively applied in genomic data processing, particularly in
efficient k-mer selection and compression. For instance, the Matchtigs algorithm proposed by
Schmidt et al. employs a greedy heuristic approach to construct compact k-mer set representations,
thereby substantially decreasing storage overhead and enhancing query performance [10]. This
strategy provides a lightweight path selection mechanism for de Bruijn graph construction and
optimization, making it suitable for high-throughput, low-redundancy assembly scenarios.

In practice, greedy algorithms are applied to tasks such as de Bruijn graph simplification, k-mer
spectrum assembly, and compressed storage. For instance, genome assemblers such as SPAdes and
MEGAHIT employ localized graph traversal algorithms to resolve branching complexities and
sequencing ambiguities within assembly graphs, thereby enhancing the accuracy and quality of
short-read assemblies. Additionally, the UST algorithm proposed by Rahman and Medvedev
employs a greedy heuristic to construct SPSS sets, reducing the total character count while
maintaining accuracy, making it suitable for compression and fast queries [11].

Although greedy algorithms are computationally efficient, they are prone to introducing
redundant paths and misassembly issues when handling highly repetitive regions and high-error-rate
data. Due to the absence of global optimality, these methods can result in fragmented assemblies. To
mitigate this issue, researchers have introduced hybrid strategies that integrate probabilistic
modeling, adaptive thresholding, and denoising preprocessing techniques to improve the robustness
and accuracy of classification and assembly processes.

Recent studies have explored adaptive greedy algorithms integrating feedback mechanisms with
Bayesian modeling to enhance decision-making resilience. At the same time, parallelization designs
improve their scalability in high-throughput metagenomic and transcriptomic data. Concurrently,
graph optimization approaches like the k-greedy routing algorithm offer theoretical frameworks for
enhancing path selection efficiency within complex network structures. In the future, greedy
strategies are expected to co-evolve with Al decision models like deep learning and reinforcement
learning, optimising biological assembly workflows through data-driven greedy path selection. With
access to cloud computing resources, their deployment capabilities in petabyte-scale data analysis
will be further enhanced.

Although greedy algorithms and Al-driven methods theoretically offer great potential for k-mer
analysis, their practical performance in large-scale genome processing ultimately depends on the
efficiency and scalability of their programming implementations. Python is widely adopted among
various programming languages due to its ease of use and ecosystem. However, when applying
these advanced strategies in Python, a series of computational bottlenecks often arise, which may
undermine their effectiveness in real-world applications. For instance, when processing large-scale
genomic data, the three major computational bottlenecks in k-mer analysis include memory
efficiency, processing performance, and system scalability.

First, k-mer counting and indexing operations often require handling billions of substrings
simultaneously. Although conventional hash tables and Bloom filters are widely employed, their
substantial memory requirements constrain their scalability. Python's efficiency in big data
processing is constrained by dynamic memory management and higher computational overhead,
making it less efficient than C/C++. To address the growing memory pressure in ultra-large-scale k-
mer data analysis, researchers have proposed compressed indexing-based processing strategies,



Proceedings of ICBioMed 2025 Symposium: Computational Modelling and Simulation for Biology and Medicine
DOI: 10.54254/2753-8818/2025.LD26351

employing structures like the Burrows-Wheeler Transform (BWT) and FM-index to achieve low-
redundancy, high-query-efficiency k-mer representation and retrieval. For instance, UST-FM,
developed in C/C++, encodes string data into compact representation sets (SPSS) and integrates
these with the FM-index to construct efficient indices, thereby significantly minimizing memory
consumption and expediting k-mer membership queries [11].

Despite Python's flexibility and ease of use, its performance is significantly limited by the Global
Interpreter Lock (GIL). This makes traditional multithreading models inefficient for leveraging
multi-core resources, especially in compute-intensive tasks like large-scale k-mer counting. In
contrast, distributed tools based on high-performance languages (e.g., C++/MPI), such as HySortK
[2], optimize memory access patterns through sorting strategies and employ hybrid parallel designs
(MPI+OpenMP), achieving notable acceleration in k-mer counting (2x faster than CPU tools) and
reduced memory usage (30% lower peak memory). The effectiveness of these tools underscores the
critical role that low-level compiled languages play in advancing genomic data analysis. Although
Python's ecosystem offers parallel libraries like Dask and Ray for task scheduling or GPU
acceleration via PyCUDA and CuPy, its overall performance remains constrained by the inherent
overhead of interpreted languages and GIL limitations. For example, HySortK processes human
genome data on a 16-node cluster 2x faster with 30% lower memory usage than traditional CPU
methods [2]. At the same time, similar optimizations are challenging to achieve in Python's
ecosystem due to technical stack limitations.

Facing the challenge of terabyte-scale data, Python tools have begun integrating frameworks like
Spark and Hadoop to achieve large-scale parallel processing. Kim et al.'s MapReduce k-mer
clustering algorithm was effectively incorporated into the Inchworm module of the Trinity platform,
resulting in a substantial decrease in memory consumption and enabling scalable, distributed
transcriptome assembly [12]. Meanwhile, cloud computing platforms like AWS and Google Cloud
enable real-time k-mer analysis through elastic resources, enhancing workflow scalability. However,
current solutions still face issues like network latency and inefficient distributed I/O, necessitating
further optimization in parallel scheduling, memory management, and GPU integration strategies.

The challenges posed by large-scale datasets have driven continuous advancements in Python's
application for k-mer analysis, including sorting optimization, parallel computing, and Al
integration.

Initially, conventional hashing techniques exhibit constraints in terms of memory efficiency and
scalability. In contrast, sorting-based k-mer counting approaches mitigate memory consumption by
segmenting and organizing k-mers through partitioning and sorting processes. Leveraging libraries
like Dask and NumPy, Python can handle massive data more efficiently in memory and for sorting.
Additionally, research has proposed automatic switching of sorting algorithms under limited
memory resources to improve processing performance in external memory sorting techniques.

Secondly, distributed models (such as MapReduce) have been proven effective in improving
computational efficiency (e.g., Trinity optimization in bioinformatics [12]). Similar functionality can
be achieved in the Python ecosystem using Dask or PySpark to circumvent GIL limitations.
Additionally, GPU acceleration technologies (such as PyCUDA and CuPy) are emerging as a trend,
significantly reducing the time required for k-mer counting and clustering in large-scale parallel
computing, particularly for real-time genome analysis.

Finally, Python's robust machine learning ecosystem has brought breakthroughs in k-mer
classification. In contrast to conventional alignment-based techniques and marker gene-dependent



Proceedings of ICBioMed 2025 Symposium: Computational Modelling and Simulation for Biology and Medicine
DOI: 10.54254/2753-8818/2025.LD26351

methodologies, alignment-free strategies like MT-MAG and DeepMicrobes leverage k-mer
frequency-based feature extraction, demonstrating superior efficacy in metagenomic classification
applications. Notably, at the species level, MT-MAG's weighted classification accuracy is on
average approximately 34.79% higher than DeepMicrobes [4]. Moreover, algorithms like decision
trees and SVMs help identify important k-mer features, aiding in mutation prediction and biomarker
screening. However, challenges such as insufficient training data and model interpretability remain.
Subsequent investigations should prioritize enhancing model generalizability and robustness in
scenarios with limited annotated datasets. Leveraging unsupervised, transfer, and active learning
strategies within the Python framework will further propel the intelligent utilization of k-mer
analysis in genomics research.

With the advancement of sequencing technologies, the volume of genomic data continues to grow,
necessitating improvements in memory efficiency, computational speed, and scalability for Python-
based k-mer analysis. To address these challenges, future research must optimise memory usage,
leverage GPU acceleration, integrate cloud computing, and apply Al-driven techniques.

A key area for improvement is optimizing memory through compression techniques and efficient
indexing structures. Methods such as Bloom filters, Count-Min Sketch, and FM indexes help reduce
memory overhead while maintaining accuracy, making large-scale genomic analysis more feasible.
Enhancing Python's data management capabilities, including low-level memory handling via Cython
and NumPy's structured arrays, can improve k-mer processing performance.

GPU acceleration has become a powerful solution for enhancing the efficiency of Python-based
k-mer analysis. Frameworks like CuPy, PyCUDA, and RAPIDS facilitate the delegation of
computationally demanding operations to GPUs, resulting in substantial enhancements in processing
throughput relative to conventional CPU-centric approaches. Additionally, cloud-based platforms
like AWS, Google Cloud Genomics, and Microsoft Azure provide scalable, on-demand computing
resources, making large-scale k-mer analysis more accessible and cost-effective.

Beyond hardware-level optimizations such as GPUs and cloud computing, integrating Al-driven
approaches opens a new frontier of limitless possibilities for enhancing Python-based k-mer
analysis. Machine learning models, specifically convolutional and recurrent neural networks, have
demonstrated superior performance compared to conventional approaches in taxonomic
classification, mutation detection, and genome annotation. Tools like DeepMicrobes and DeepK-mer
showcase the potential of Al in improving microbial species identification, while predictive
modeling approaches aid in detecting rare genetic variants associated with disease susceptibility.

Despite these advancements, challenges persist, including but not limited to model
interpretability, high computational demands, and the need for large labeled datasets. Subsequent
research endeavors should prioritize the advancement of semi-supervised learning methodologies
and the optimization of artificial intelligence models to augment their utility within the realm of k-
mer analysis. By combining AI, GPU acceleration, and cloud computing, Python-based k-mer
analysis can achieve greater scalability, enabling real-time genomic research and advancing the field
of bioinformatics.

Python is pivotal in k-mer analysis, genome assembly, variant detection, and microbial
classification. Its rich library ecosystem and ease of use make it an ideal language for building large-



Proceedings of ICBioMed 2025 Symposium: Computational Modelling and Simulation for Biology and Medicine
DOI: 10.54254/2753-8818/2025.LD26351

scale bioinformatics pipelines. Through sorting optimizations, parallel computing, and Al model
integration, Python has significantly improved computational efficiency in these areas. Nevertheless,
challenges such as high memory overhead, limited parallelism, and execution performance remain.
Traditional hash-counting methods face high memory consumption, while the GIL restricts multi-
core utilization efficiency. Optimisation relies on frameworks like Dask, multiprocessing, and
compressed indexing techniques.

In the future, GPU acceleration tools (such as CuPy and PyCUDA) will enhance processing
speed. At the same time, deep learning models will also improve the accuracy of k-mer classification
and variant detection. Combining greedy algorithms and AI will contribute to more robust assembly
path selection. Furthermore, the integration of high-performance computing (HPC), cloud
computing platforms, and automated inference systems will enhance Python's utility in petabyte-
scale data processing. With the widespread adoption of cloud-based analysis platforms and the
deepening application of Al real-time models, Python is poised to continue leading the development
of k-mer analysis methods, driving ongoing innovation in precision medicine, pathogen
surveillance, and evolutionary genomics research.

References

[1] Mandlik, J., Patil, A., & Singh, S. (2024). Next-generation sequencing (NGS): Platforms and applications. Journal
of Pharmacy & Bioallied Sciences, 16, 41-45. https: //doi.org/10.4103/jpbs.jpbs_838 23

[2] Li, Y., & Guidi, G. (2024). High-performance sorting-based k-mer counting in distributed memory with flexible
hybrid parallelism [Preprint]. arXiv https: //arxiv.org/abs/2407.07718

[3] Margais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-
mers. Bioinformatics, 27(6), 764—770. https: //doi.org/10.1093/bioinformatics/btr014

[4] Li, W, Kari, L., Yu, Y., & Hug, L. A. (2023). MT-MAG: Accurate and interpretable machine learning for complete
or partial taxonomic assignments of metagenome-assembled genomes. PLOS ONE, 18(8), €0283536. https:
//doi.org/10.1371/journal.pone.0283536

[5] Chor, B., Horn, D., Goldman, N., Levy, Y., & Massingham, T. (2009). Genomic DNA k-mer spectra: Models and
modalities. Genome Biology, 10(10), R108. https: //doi.org/10.1186/gb-2009-10-10-r108

[6] Ji, Y., Zhou, Z., Liu, H., & Davuluri, R. V. (2021). DNABERT: Pre-trained Bidirectional Encoder Representations
from Transformers model for DNA-language in genome. Bioinformatics, 37(15), 2112-2120. https:
//doi.org/10.1093/bioinformatics/btab083

[71 Liang, Q., Bible, P. W, Liu, Y., Zou, B., & Wei, L. (2020). DeepMicrobes: taxonomic classification for
metagenomics with deep learning. NAR Genomics and Bioinformatics, 2(1), 1qaa009. https:
//doi.org/10.1093/nargab/lqaa009

[8] Chatterjee, S., Koslicki, D., Dong, S., Innocenti, N., Cheng, L., Lan, Y., Vehkaperi, M., Skoglund, M., Rasmussen,
L. K., Aurell, E., & Corander, J. (2014). SEK: Sparsity exploiting k-mer-based estimation of bacterial community
composition. Bioinformatics, 30 (17), 2423-2431. https: //doi.org/10.1093/bioinformatics/btu320

[9] Khezri, S. F., Ebrahimi, A., & Eslahchi, C. (2024). Target controllability: A feed-forward greedy algorithm in
complex networks, meeting Kalman’s rank condition. Bioinformatics, 40 (11), 1-9. https:
//doi.org/10.1093/bioinformatics/btae630

[10] Schmidt, S., Khan, S., Alanko, J. N., Pibiri, G. E., & Tomescu, A. 1. (2023). Matchtigs: Minimum plain text
representation of k-mer sets. Genome Biology, 24(1), 136. https: //doi.org/10.1186/s13059-023-02968-z

[11] Rahman, A., & Medvedev, P. (2021). Representation of k-mer sets using spectrum-preserving string sets. Journal of
Computational Biology, 28 (4), 381-394. https: //doi.org/10.1089/cmb.2020.0431

[12] Kim, C. S., Winn, M. D., Sachdeva, V., & Jordan, K. E. (2017). K-mer clustering algorithm using a MapReduce
framework: Application to the parallelization of the Inchworm module of Trinity. BMC Bioinformatics, 18, 1-15.
https: //doi.org/10.1186/s12859-017-1881-8”



