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Abstract.  With the acceleration of the global aging process, falls among the elderly have
become a major public health issue threatening their health. Currently, the single sensor
monitoring technology has significant limitations: the misjudgment rate of wearable
accelerometers for daily activities, visual monitoring is significantly affected by light and
there is a potential risk of privacy leakage, making it difficult to adapt to complex home
scenarios. This paper reviews the research progress of real - time fall monitoring systems for
the elderly based on multimodal sensor fusion, focuses on analyzing the collaborative
mechanisms of millimeter - wave radar, accelerometers, and heart rate sensors, and
summarizes key technologies such as data fusion architectures, algorithm optimization, and
edge computing deployment. By comparing the performance differences of different fusion
strategies, it is found that the three - level attention fusion architecture performs best in
complex scenarios. At the same time, this paper points out problems in current research,
such as the insufficient proportion of open - source data in home scenarios and the lack of
night - time monitoring solutions, and looks forward to the future development direction of
combining the Transformer architecture with privacy computing.
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1. Introduction

The increasing global aging population has made the problem of falls among the elderly
increasingly severe. According to data from the National Health Commission [1], approximately
684,000 people worldwide die each year from fall-related injuries, with those aged 60 and above
accounting for over 60%. The number of elderly people living alone in China has exceeded 120
million, and the fatality rate of those who are not treated in a timely manner after a fall reaches 30%.
However, intervention within the "golden one-hour" can reduce the risk of death by 50%. The latest
report from the World Health Organization further points out that falls have become the leading
cause of accidental death among the elderly aged 70 and above. Among them, falls in the home
environment account for as high as 85%, far exceeding those in public places (10%) and medical
institutions (5%) [2]. This data highlights the urgency of fall monitoring in the home scenario.

The limitations of existing monitoring technologies have become an industry consensus.
Although visual monitoring can capture fine movements, measurements from 100 households show
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that its missed detection rate surges to 35% in backlight and shadow scenarios. Moreover, 83% of
the elderly are resistant to the installation of cameras due to privacy concerns [3]. Regarding
wearable devices, a tracking study of 200 elderly people living alone found that due to postural
interference, the false alarm rate of accelerometers reaches 24.3% when putting on/taking off clothes
or picking up items, leading to a user abandonment rate of over 40% [4]. In addition, single
technologies such as barometric pressure sensors and infrared sensors also have their respective
shortcomings: the former has a too low sensitivity to height changes (error ±5cm), and the latter is
easily affected by furniture occlusion (missed detection rate 18%) [5].

The rise of multimodal fusion technology provides new ideas for solving the above problems.
The 77GHz band millimeter-wave radar can stably capture the human motion trajectory under the
cover of bedding and in a dark environment due to its penetrability, and still maintain a 92%
detection rate in the bathroom steam environment [6]. The combination of an accelerometer and a
heart rate sensor can reduce misjudgments through "motion + physiological" double verification.
The sudden increase in heart rate (ΔHR) within 5 seconds after a fall is positively correlated with the
degree of injury (r=0.76), providing a quantitative basis for emergency intervention [7]. The
maturity of edge computing technology has further promoted the breakthrough in real-time
performance. The Raspberry Pi terminal has achieved local response within 8 seconds, which is
more than 60% shorter than the traditional cloud - based solution [8].

Despite the progress made in research, there are still three major gaps in the current field: First,
the proportion of home scenarios in open-source datasets is insufficient (for example, the UCI HAR
Dataset only accounts for 12%), and the difference between laboratory data and the real home
environment leads to a 15%-20% decrease in the accuracy of the model when it is put into practice.
Second, there is a lack of low-power consumption solutions at night. The battery life of existing
devices is generally less than 48 hours, making it difficult to meet the 24-hour monitoring
requirement. Third, the cross-modal feature association mechanism needs to be improved. The time
synchronization error (±0.5 seconds) of data from different sensors may lead to fusion failure.

The structure of this paper is as follows: Chapter 2 reviews the data sources and preprocessing
methods of the multimodal monitoring system, compares the feature extraction strategies of
different sensors, and analyzes the fusion architecture; Chapter 3 analyzes the algorithm
optimization technology, focuses on the combination of the attention mechanism and machine
learning models, compares the system performance through experimental data, and discusses the
scenario adaptation issues in practical applications; Chapter 4 summarizes the research progress and
looks forward to the future directions.

2. Methods

2.1. Introduction to related datasets

The data sources of the multi-modal monitoring system need to cover the four-dimensional
information of "motion - space - physiology - environment", and the specific parameters and
acquisition standards are as follows:

The UCI HAR Dataset contains accelerometer (3 axes, 50Hz) and gyroscope (3 axes, 50Hz) data
from 30 subjects (aged 19 - 48), recording 10 types of activities (6 daily activities + 4 fall types),
with a sample size of 10,299. During data collection, the devices were worn at the waist, which
highly matches the daily wearing habits of the elderly (such as in pockets or on belts). However, the
high proportion of young samples (80%) may lead to insufficient adaptability of the model to the
physiological characteristics of the elderly [9].
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The Kaggle Fall Detection Dataset covers millimeter-wave radar (77GHz, 10Hz) and heart rate
belt (1Hz) data of 200 elderly people (aged 65 - 85), containing 5,000 labeled events ( 

  ). The radar data records the distance - time matrix (resolution  
 ), from which 12 - dimensional features such as centroid displacement and velocity can

be extracted. The heart rate data contains physiological indicators such as RR interval and HRV,
providing key evidence for fall confirmation [10].

In terms of supplementing clinical data, a sample survey by the National Bureau of Statistics
(2024) shows that the high - incidence scenarios of elderly people falling are the bathroom (32.7%),
bedroom (28.3%), and living room (21.5%) in sequence. The main floor materials are ceramic tiles
(42%), wooden floors (35%), and carpets (23%), providing environmental parameters for scenario -
based model training. The 1,200 cases of clinical data from Peking Union Medical College Hospital
(2022) have established the "falling posture - injury level" correspondence (for example, the fracture
risk of falling in a prone position is 3.2 times that of sitting), which is used to optimize the warning
priority.

2.2. Data preprocessing and feature extraction

The preprocessing steps need to be optimized for the heterogeneity of multi-source data. For missing
value processing, linear interpolation is used to fill the missing values in the acceleration and heart
rate data (with a missing rate < 3%), and Kalman filter prediction is adopted for the packet loss of
radar signals, improving the data integrity to over 98%. In terms of standardization, Z-score
standardization is performed on the acceleration data (range ±2g) and heart rate data (60 - 120 bpm)
to eliminate the dimensional differences; min-max normalization is applied to the radar distance data
to the interval [0, 1] to enhance the model generalization ability. For sample balancing, the SMOTE
algorithm (   nerby) is used to increase the proportion of fall samples from 15% to 30%. At the
same time, random oversampling is used to supplement samples in scarce scenarios such as at night
and in the bathroom, making the proportion of samples in each scenario consistent with the real
distribution [11]. In the feature enhancement stage, short - time Fourier transform (STFT, window
length 512, overlap rate 50%) is carried out on the millimeter - wave radar data to convert it into a
time - frequency diagram, retaining the distance – time. Dynamic characteristics of the inter-domain;
The acceleration data is segmented using a sliding window (    sampling points), and the
robustness is enhanced through adding noise (Gaussian noise   ) and time reversal [6].

The feature extraction strategies for different sensors need to be matched with their physical
characteristics. In terms of millimeter-wave radar, the 77GHz frequency band can penetrate
obstacles such as clothing and glass, with a distance resolution of 0.1m and a velocity resolution of
0.05m/s, enabling the capture of the three-dimensional motion trajectory of the human body's
centroid. The feature extraction process consists of three steps: removing static background noise
through Constant False Alarm Rate (CFAR) detection; extracting micro-Doppler features using the
Fast Fourier Transform (FFT) (for example, the arm swing frequency is 1 - 3Hz, and the torso
rotation angular velocity is > 5rad/s when falling); inputting into the ResNet18 network (containing
4 residual blocks) to extract deep spatial features, and outputting a 128-dimensional feature vector.
This method improves the accuracy in occluded scenes by 18% compared to the traditional
threshold method [6].

The accelerometer uses a 3-axis MEMS accelerometer (measurement range ±8g, sampling rate
100Hz) to record the motion state. Feature extraction focuses on two types of information: time-
domain features (peak value, kurtosis, integral area) are used to identify the fall impact with a

fall / non  −  fall  = 1 :  3

0.1m × 0.1s

k = 5 

512/128 

 σ = 0.01
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vertical acceleration > 1.5g; frequency-domain features (energy ratio in the 0 - 5Hz frequency band)
are used to distinguish the frequency differences between walking (1 - 2Hz) and falling (3 - 5Hz).
The BiLSTM model (2 hidden layers, 64 neurons) improves the accuracy of distinguishing between
bending over and falling to 92% through forward/backward temporal sequence modeling [4].

The heart rate sensor uses photoplethysmography (PPG) to collect heart rate signals (sampling
rate 25Hz). The preprocessing includes baseline drift removal (wavelet threshold denoising) and
peak detection (Pan-Tompkins algorithm). Key features include: the magnitude of sudden heart rate
changes (    ); the time-domain indicators (SDNN, RMSSD) and frequency-domain
indicators (    ) of heart rate variability (HRV). The LightGBM model shows that HRV
features can achieve an AUC value of 0.89 for the fall/non-fall binary classification, which is
significantly better than single motion features (0.76) [7].

2.3. Multimodal fusion architecture

Existing research has proposed various fusion strategies. This paper focuses on reviewing the three-
level attention fusion architecture and supplements the comparative analysis of early fusion and late
fusion. Early fusion directly concatenates multi-source signals at the data layer (such as radar
distance sequence + acceleration time-domain features) and inputs them into the CNN-LSTM hybrid
model. Its advantage is to preserve the correlation of original information, but the disadvantage is
that it is vulnerable to noise accumulation. In high-noise scenarios (such as TV interference), the
accuracy drops to 82% and the false alarm rate rises to 12% [5].

Late fusion involves independent modeling of each modality, followed by decision - making
through weighted voting (where the weights are determined by the F1 score of the validation set).
For example, the radar model outputs the fall probability P1, the acceleration model outputs P2, and
the heart - rate model outputs P3. The final decision is (   ) (with a
threshold of 0.5). This method controls the false - alarm rate at 7.5%, but due to ignoring feature
correlations, the accuracy in complex scenarios (such as falling while making a phone call) is only
85% [12].

The three-level attention fusion architecture is the optimization plan that this paper focuses on. Its
structure is divided into three parts: The bottom-level perception layer extracts features through
ResNet18 (radar time-frequency map) and BiLSTM (acceleration time series) respectively. The
feature fusion layer introduces a dynamic attention mechanism, calculates the weight through the
formul     (where σ is the sigmoid function), and realizes
the adaptive weighting of motion features (F_motion) and spatial features (F_spatial). For example,
in the bathroom scene, the weight of radar features is increased to 0.6 (to counter steam
interference), while in an open space, the weight of acceleration features is dominant (0.55). The
decision layer fuses physiological signals (heart rate features) and environmental parameters
(ground material, light intensity) and then inputs them into the LightGBM classifier (threshold 0.6).
Edge deployment is implemented using NVIDIA Jetson Nano (GPU computing power of 21 TOPS),
with local inference power consumption < 10W, and it supports continuous operation for 72 hours
[8].

The model training uses the PyTorch framework. To address the problem of the low proportion of
fall samples, Focal Loss (   =0.75 , γ=2) is adopted to suppress the weights of the majority class
(non-fall). Combined with the Ranger optimizer (learning rate    , weight decay    ), the
convergence is accelerated. 5-fold cross-validation shows that this strategy increases the F1 score by
0.08 (reaching 0.96) compared to the ordinary cross-entropy loss.

ΔHR > 25bpm

LF/HF

P = 0.4 P  1 + 0.3 P  2 + 0.3 P  3

 α  =  σ(W1 ⋅ [Fmotion; Fspatial] + b1)

α 
5e − 4 1e − 5
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To solve the problem of time misalignment of multi-sensor data, the system introduces a
hardware synchronization mechanism: The sampling start points of the radar, accelerometer, and
heart rate sensor are aligned through GPS timekeeping (with an error of ±1ms) or a hardware trigger
signal, and the timestamp accuracy is controlled within 5ms. At the software level, the Dynamic
Time Warping (DTW) algorithm is used to elastically match asynchronous data, reducing the time
synchronization error from ±0.5 seconds to ±0.1 seconds [4].

In terms of low-power design, the "event-triggered + sleep" mode is adopted: the sensor is in a
low-power state by default (current<1mA ). When the acceleration exceeds 0.5g or the radar detects
human movement, data collection is activated (current 10 - 20mA). With a lithium battery
(5000mAh), a 72-hour battery life can be achieved. This solution reduces power consumption by
80% compared to the full-time data collection mode [7].

3. Results and disscussion

As showen in table 1,the multi-modal fusion model comprehensively outperforms single sensors and
traditional fusion methods on the Kaggle test set :

Table 1. Performance comparison of different models (Kaggle test set, )

Model Accuracy False positive rate F1 fraction Response Time (Seconds)

Single millimeter-wave radar 95.8% 5.2% 0.93 7.5
Single accelerometer 82.7% 24.3% 0.78 1.2

Early Fusion (CNN-LSTM) 90.5% 8.7% 0.89 9.8
Three-level attention fusion 97.3% 3.1% 0.96 6.2

UCI dataset verification shows that the model's ability to distinguish between easily confused
activities has been significantly improved: the misjudgment rate of the bending action has decreased
from 12.5% to 1.8%, and the misjudgment rate of the jumping action has decreased from 8.3% to
0.9%. This is due to the attention mechanism focusing on key features - the difference in the peak
acceleration of the torso during a fall (an average of 2.1g) and during bending (an average of 0.8g) is
magnified, and at the same time, the heart rate signals (    ) during a fall, (  

 ) during bending) provide a secondary verification [7].
Scene adaptability analysis shows that the low-friction characteristics of the tiled floor in the

bathroom scene lead to a faster fall speed (an average of 1.8m/s). The model improves its
performance through three adjustments: increasing the radar feature weight to 0.6 (to counter steam
interference); reducing the acceleration threshold to 1.2g (to correct the buffering effect); and
shortening the response time to sudden heart rate changes to 3 seconds. 100 simulation experiments
show that the accuracy rate reaches 96.5%, which is only a 0.8% decrease compared to the
laboratory scene [13].

In the carpet scenario, the buffering effect of thick carpets (>5cm) reduces the peak acceleration
by 30%-40%. By integrating the feature from the radar that "the trunk tilt angle > 45° and lasts for 2
seconds", the model reduces the missed detection rate from 15% to 5.2%. Data from the National
Bureau of Statistics shows that this scenario accounts for 23% of household falls, and after
optimization, it can cover over 90% of home scenarios.

In night-time scenes, the combination of millimeter-wave radar and infrared light compensation
solves the lighting problem. However, night-time samples only account for 38% of the existing data,
causing the accuracy of the model to drop to 91% between 2 and 5 am (a high-incidence period).

n = 1000

ΔHR  = 28 ± 5 bpm

ΔHR  = 5 ±  2 bpm
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The data augmentation method of generating virtual night-time samples through GAN can increase
the night-time accuracy by 6% [12].

In terms of real - time performance and privacy protection, the edge - computing deployment has
achieved the localization of the entire "detection - decision - alarm" process. The GPU acceleration
of NVIDIA Jetson Nano reduces the feature - extraction time to 2.1 seconds, the LightGBM
inference time is 0.3 seconds, and with the data - transmission delay of 3.8 seconds, the total
response time is 6.2 seconds, which is 50% faster than the cloud - based solution (12.5seconds). The
pilot projects in 10 communities show that this system shortens the average time to first - aid after a
fall from 47 minutes to 12 minutes, meeting the "golden 1 - hour" intervention requirement [8].

The privacy protection adopts the principle of "data not leaving the country": Radar and
acceleration data are stored locally (in encrypted format). Only alarm information (excluding
original data) is uploaded when an abnormal event is triggered, which complies with Article 25 of
the GDPR, the "data minimization" principle [14]. User research shows that 89% of the elderly have
a higher acceptance of this solution than visual monitoring (only 41%), significantly improving
long-term use compliance.

4. Conclusions

The multimodal sensor fusion technology effectively balances the accuracy, real-time performance,
and privacy protection of elderly fall monitoring by integrating millimeter-wave radar,
accelerometer, and heart rate data. The three-level attention fusion architecture performs optimally
in complex home environments. By combining spatial trajectories, motion characteristics, and
physiological signals, it increases the accuracy rate to 97.3% and reduces the false alarm rate to
3.1%. The edge computing deployment achieves a rapid response time of 6.2 seconds, laying a
technological foundation for the "golden one-hour" intervention.

However, there are still three major challenges in this field: insufficient samples of home
scenarios and nighttime in open-source data, resulting in a performance gap when the model is
implemented; low-power technology needs to be broken through, and the battery life of existing
devices is difficult to meet the long-term monitoring requirements; cross-modal time
synchronization errors may affect the fusion accuracy.

Future research can be advanced in three aspects: First, jointly build a "full-scenario - full-time"
standardized dataset with elderly care institutions and hospitals, including scarce samples such as
those in the bathroom and at night. Second, introduce the Transformer architecture (such as ViT-
Fusion) to model cross-modal long-distance dependencies through the self-attention mechanism.
Third, develop an energy harvesting module (such as human kinetic energy harvesting) to extend the
device's battery life to more than one month. These directions will promote the fall monitoring
technology to move from the laboratory to large-scale applications, providing more reliable safety
guarantees for the aging society.
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