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Abstract. Spatiotemporal mode locking (STML) enables femtosecond emission that exploits
coupled spatial and temporal dynamics, but achieving targeted transverse modes with
predictable limits remains difficult due to high-dimensional, nonlinear cavity parameter
spaces. We present a data-driven framework that combines a fast digital twin of the cavity
with experiment-in-the-loop learning to synthesize and switch among variable transverse
modes while quantifying performance limits. A reduced-order propagation model provides
millisecond evaluations for control, while Bayesian optimization and reinforcement learning
map actuator settings to modal content, pulse energy, and jitter. Closed-loop experiments on
a reconfigurable cavity validate inverse designs for TEM00{00}–TEM10{10}–multimode
operation, revealing trade-offs among dispersion, Kerr nonlinearity, saturable absorption,
and spatial filtering. We measure timing jitter, relative intensity noise, and spectral-temporal
quality to bound achievable performance across modes and identify mode-dependent
ceilings governed by gain bandwidth and B-integral. Results establish a general route to
agile, specification-driven STML sources and provide actionable guidance on performance
limits for variable-mode femtosecond lasers.
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1. Introduction

Modern ultrafast applications, three-photon microscopy, precision micromachining, attosecond
spectroscopy and quantum memory, expect sub-200-fs pulses in user-defined spatial modes. Flat-top
or Bessel beams minimise photodamage, while diffraction-limited Gaussians maximise fluence, yet
altering the transverse profile usually stretches the pulse. Spatiotemporal mode locking (STML)
breaks that compromise by merging temporal and spatial dynamics into a single eigenstate, but
simultaneously turns cavity alignment into a 17-dimensional, discontinuous optimisation problem in
which micro-adjustments of dispersion, Kerr nonlinearity, saturable-absorber recovery, spatial
filtering or gain can trigger Q-switching or modulation instability. Manual “turn-the-screw” tuning
cannot explore such a landscape or track slow thermal drift. We tackle this complexity with a digital-
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twin, experiment-in-the-loop strategy that unites a physics-aware reduced-order model, multi-
objective Bayesian optimisation and model-based reinforcement learning (RL) [1].

The surrogate projects split-step Fourier propagation onto a compact Laguerre-Gauss basis,
reproduces essential STML physics, and evaluates a full round trip in 0.43 ms on a single GPU.
Bayesian optimisation, primed by Latin-hypercube samples, proposes actuator vectors that balance
six simultaneous targets, energy, duration, modal purity, spectral phase, relative-intensity noise and
timing jitter, while RL fine-tunes the optimum and suppresses drift by locally minimising a
composite cost. The framework is demonstrated on a 165 cm Yb\:CALGO cavity equipped with
twenty-four chirped-mirror pairs (-2400 fs² net group-delay dispersion), a motorised telescope
coupled to a liquid-crystal spatial-light modulator and a 2.5 % SESAM. Ninety-three telemetry
features, spectra, beam profiles, SPIDER traces and phase-noise spectra, stream to the optimiser at
10 Hz [2]. The system switches deterministically among TEM₀₀, TEM₁₀ and a programmed
multimode superposition in <5 s and compiles 1 967 stable operating points that map the joint
dependence of pulse energy, width, jitter and noise on transverse order, converting STML cavities
from laboratory curiosities into specification-driven femtosecond sources [3]. These results pave the
way for field-deployable ultrafast instruments whose performance can be programmed, verified and
maintained entirely by algorithms, without manual optics expertise or continuous supervision.

2. Literature review

2.1. Fundamentals of spatiotemporal mode locking

Spatiotemporal mode locking occurs when material dispersion, Kerr self-phase modulation and
spatially selective loss combine into an operator whose eigen-functions possess both temporal
envelopes and transverse indices (figure 1) [4]. The intracavity energy flow chooses which eigen-
mode dominates, and the threshold separating two attractors can shift when any single actuator
moves, even sub-micrometre adjustments of an aperture radius. The resulting system supports
several stationary solutions, each with distinct energy-duration combinations and stability margins.

Figure 1. Conceptual outline of spatiotemporal mode-locking, attractor dissection, and the
spatiotemporal maximum-gain principle

2.2. Data-driven inverse design in ultrafast cavities

Data-driven design techniques have recently appeared in fibre oscillators, synchronously pumped
OPOs and Kerr-lens cavities. Gaussian-process surrogates or neural networks replace brute-force
parameter sweeps, while Bayesian or evolutionary optimisers find globally optimal settings with
orders-of-magnitude fewer evaluations. Reinforcement-learning controllers then keep the cavity at
its optimum despite gradual thermal or mechanical drift. These successes suggest that even the high
dimensionality of STML can be confronted algorithmically [5].
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2.3. Performance limits and noise in STML

The shortest attainable pulse is bounded below by the gain bandwidth and above by nonlinear
breakup. Timing jitter follows Gordon–Haus diffusion, resonator-length noise and pump-driven
index fluctuations. Because higher-order transverse modes spread energy over a larger area, their
intracavity fluence is lower; they therefore exhibit lower nonlinear phase and larger timing jitter.
RIN scales similarly: weaker spatial filtering in higher modes allows additional amplitude
fluctuations to survive [6].

3. Methods

3.1. Cavity architecture and search space

Table 1 summarises the nine actuators found to dominate performance. The search ranges include
every stable configuration observed during four weeks of exploratory alignment. Pump current and
group-delay dispersion exert the strongest influence on pulse energy and duration, whereas the SLM
phase and aperture radius control modal purity [7]. All actuators are motorised and interfaced to the
optimisation software with <25 ms latency.

Table 1. Principal actuators and machine-search ranges

Parameter Symbol Range Resolution

Net GDD per round-trip D2 −3400 fs² … −600 fs² 25 fs²
Third-order dispersion D3 −400 fs³ … 0 10 fs³

Aperture radius ra 70 µm … 300 µm 2 µm
SLM phase offset ϕSLM 0 … 2π 0.02 π

Pump current Ip 0.8 A … 2.1 A 5 mA
Telescope separation dtel 36 mm … 49 mm 10 µm

Crystal position zc 0 mm … 25 mm 50 µm
SESAM angle θs 0° … 3° 0.05°

SLM radial index mset 0 … 3 integer

3.2. Digital twin and optimisation strategy

Every round-trip the intracavity field is decomposed into six Laguerre–Gauss modes and propagated
through a symmetrised split-step routine. Implemented in CUDA, the calculation takes 430  μs,
enabling real-time feedback. A Gaussian-process regressor trained on 2 500 simulation–experiment
pairs predicts five pulse metrics with R2=0.93. Exploration proceeds by maximising an upper-
confidence-bound acquisition (See formula 1):

(1)

after which a deterministic RL policy minimises a composite loss that weights pulse duration,
energy deviation, modal impurity and the nonlinear phase. Gradients are estimated by deterministic
perturbation requiring fewer than twenty experimental evaluations [8].

U (x) = μ (x) + κσ (x),κ = 2.6
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4. Experimental procedure

4.1. Instrumentation and telemetry

Near-field beam profiles are captured at 200 Hz on a 12-bit CMOS camera; spectra are measured
with 0.02 nm resolution. Pulse width and spectral phase come from SPIDER with 15 fs temporal
resolution, verified by second-harmonic autocorrelation. A microwave phase-noise analyser with
200 kHz ENBW records timing jitter down to 1 fs Hz−1/2. All measurements feed a 93-component
telemetry vector updated at 10 Hz.

4.2. Optimisation campaign

The optimisation loop begins with Latin-hypercube sampling, builds a surrogate from the initial data
and launches Bayesian optimisation. Convergence is declared when predicted improvement falls
below 0.5 % for three consecutive iterations or after 70 queries, whichever comes first. A model-
based RL agent then fine-tunes the cavity until pulse duration, energy, RIN and modal purity all
satisfy user-defined thresholds; that stage typically consumes 15–20 evaluations [9].

4.3. Mode-switching and limit testing

Three operating programmes are studied in sequence. The first targets a high-power TEM00 state
around 1.4 W average output. The second introduces a first-order SLM phase mask to enforce
TEM10. The third superposes four Laguerre-Gauss orders to form a deliberately multimode beam
with relative weights 0.38, 0.34, 0.18 and 0.10. For each mode, pump current is ramped until either
the nonlinear BB-integral exceeds 1.8 rad, the surrogate variance rises above 0.15 or modulation-
instability sidebands climb above −35 dB, thereby revealing the practical energy ceiling.

5. Results and analysis

5.1. Optimisation efficiency and steady-state metrics

Bayesian optimisation converged after      evaluations for TEM00 and      for TEM10.
Reinforcement learning required 18±4 gradient steps. The mean latency between a mode-switch
command and metric stabilisation within 2 % is 4.3±0.5  s, demonstrating true real-time agility (see
table 2).

Table 2. Pulse metrics at optimum (mean ± SD over 10 000 pulses)

Mode Energy
EE (nJ)

RMS Energy Drift
(105 shots)

Duration
τ(fs)

Band-
width (nm)

Chirp φ′i''
(fs²)

Timing Jitter
σt (fs)

RIN (dBc Hz−1

@ 100 k)
Modal

Purity Pm

TEM00 11.62 ±
0.28 0.41 146.8 ±

2.9 9.78 ± 0.37 14.6 ±
0.8 52 ± 7 −148.4 ± 1.9 0.964 ±

0.008

TEM10 7.18 ±
0.21 0.48 191.3 ±

4.7 7.94 ± 0.31 17.9 ±
1.1 137 ± 11 −141.2 ± 3.3 0.924 ±

0.015
Multim

ode
14.36 ±

0.37 0.63 223.8 ±
5.5

11.49 ±
0.46

19.2 ±
1.0 176 ± 14 −134.7 ± 4.1 0.744 ±

0.028

The table reveals that moving from TEM00 to TEM10 decreases energy by 38 % and lengthens the
pulse by 30 %, consistent with weaker nonlinear phase and reduced bandwidth. RIN rises by 7 dB

42+9
−6 57+11

−8
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because the larger spot size less effectively filters pump-driven amplitude fluctuations [10].

5.2. Energy–duration and noise scalings

A series of 63 independent operating points show that the energy–duration cloud collapses onto a
power-law with exponent −0.92 for TEM00 and −0.81 for TEM10. The difference reflects the weaker
self-phase modulation of the higher-order beam. Timing-noise spectra average 8.1×10−5  rad2Hz−1 at
100 kHz for TEM00 and 2.3×10−4  rad2Hz−1 for TEM10; integrating those curves yields the jitter
numbers already quoted in Table 2 and confirms that Gordon–Haus diffusion climbs roughly with
the square root of the radial index.

5.3. Nonlinear phase and energy ceilings

Energy scaling continues until the nonlinear phase, defined by formula 2:

(2)

reaches 1.64±0.05 for TEM00 and 1.58±0.04 for TEM10. Those values agree with the simulated
instability threshold Bcrit=1.7  rad. Beyond that point sidebands at ±3.1 THz rise above −32 dB and
Q-switching sets in within 0.3 ms, capping sustainable energies at 12.1 nJ and 7.5 nJ respectively.
The multimode mixture fails slightly earlier because competing indices share the same gain, so their
combined fluence bleaches the SESAM more violently.

6. Discussion

6.1. Implications for agile ultrafast sources

The ability to reconfigure a femtosecond cavity between distinct spatial modes in under five seconds
without human intervention unlocks new experimental protocols. Three-photon microscopes could
switch from gentle multimode illumination during navigation to high-brightness TEM00 for
nanosurgery, thereby reducing cumulative photodamage. Cavity-enhanced quantum memories,
which often require dynamic mode matching, would benefit from the demonstrated timing-jitter
floor of 52 fs, translating into sub-200 mrad integrated phase error across an octave-spanning comb.
The quantitative specification map means that system architects can now read off, rather than guess,
which mode offers the best compromise among energy, duration and noise for any given task.

6.2. Limitations and future outlook

The study uses a single SESAM design and a bulk gain crystal; fibre-integrated or ultraviolet
implementations will alter both the Kerr coefficient and the SESAM saturation fluence, shifting the
BB-integral ceiling. The present digital twin ignores slow thermo-optic lensing below 0.1 Hz;
embedding a finite-element thermal module or adopting transfer learning from related cavities
should reduce the number of optimisation queries required for convergence. Finally, stochastic-
gradient Langevin dynamics could accelerate exploration of high-dimensional spaces while
quantifying epistemic uncertainty, an asset when transferring models across laser platforms.

B = 2π
λ0
n2 ∫ Lff

0
I (z)dz
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7. Conclusion

A data-driven experiment-in-the-loop methodology has been demonstrated that designs, stabilises
and quantitatively characterises spatiotemporal mode-locked cavities. The reduced-order digital twin
executes in sub-millisecond time, Bayesian optimisation discovers near-optimal points in fewer than
60 evaluations and reinforcement learning maintains performance for hours. The system realises
deterministic TEM00 , TEM10 and multimode operation, with measured ceilings of 147 fs at 11.6 nJ
and 191 fs at 7.2 nJ, in line with the Kerr–bandwidth limit. A data set of 1 967 stable operating
points provides the first specification map of how energy, duration, timing jitter and RIN vary across
mode index, turning STML from an art into an engineering discipline.
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