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Neuromorphic computing has gained increasing attention as a bio-inspired
solution to the limitations of traditional computing systems in power and real-time
constraints. In robotic control tasks, real-time processing and energy efficiency are crucial,
especially for autonomous and mobile systems. Neuromorphic chips mimic the structure and
operation of biological neurons, enabling low-latency and low-power processing. This
review examines the architectures, performance benchmarks, and application cases of
mainstream neuromorphic hardware platforms used in robotic perception and control. It also
compare their energy consumption and latency with conventional control platforms.
Furthermore, this paper identifies key challenges in system integration and suggests future
directions including improved scalability, online learning, and the combination with edge Al
frameworks. The paper finds that neuromorphic chips can significantly reduce energy
consumption and improve real-time performance in robotic control. However, challenges in
algorithm adaptation, standardization, and hardware integration remain. This study aims to
provide researchers with insights into the practical implementation of neuromorphic control
systems in energy-sensitive robotic applications.

Neuromorphic computing, Spiking neural network, Real-time control, Energy
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Neuromorphic computing, inspired by the human brain, has emerged as a promising paradigm to
overcome the limitations of traditional computing systems in terms of latency and energy
consumption. In the field of robotics, real-time control is a core requirement, especially for tasks
such as navigation, obstacle avoidance, and sensory feedback processing. Traditional processors
such as Central Processing Unit (CPUs) and Graphics Processing Unit(GPUs), while powerful, often
lead to excessive power draw and processing delays, which are unsuitable for energy-sensitive
autonomous systems.

Recent research has focused on neuromorphic hardware platforms such as Intel's Loihi, IBM's
TrueNorth, and SpiNNaker, which emulate spiking neural networks (SNNs) to achieve energy-
efficient computation. According to Davies et al., Loihi supports event-driven computation and on-
chip learning, making it suitable for mobile robotic applications [1]. Furber et al. demonstrate that
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SpiNNaker can efficiently model large-scale neural systems for real-time control [2]. These works
highlight the growing interest and potential of neuromorphic control in practical robotics.

This paper adopts a literature review method to explore and evaluate the current state of
neuromorphic chips applied to robotic control tasks. The review categorizes major chip platforms,
compares their energy and latency performance, and discusses open challenges and future research
directions. The paper contributes to the understanding of how neuromorphic systems can reshape
low-power autonomous control and guide future designs of robotic computing architectures.

2. Neuromorphic chip architectures for robotic control

Neuromorphic chips emulate the spiking behavior of biological neurons to achieve energy-efficient
and real-time computation. Three representative platforms are frequently cited in the literature:
IBM's TrueNorth, Intel's Loihi, and the University of Manchester's SpiNNaker. Each adopts a
different architectural strategy. TrueNorth implements a hardwired SNN core optimized for static
pattern recognition, while Loihi introduces programmable learning rules and on-chip plasticity,
making it suitable for adaptive robotic tasks. SpiNNaker, on the other hand, is a massively parallel
digital architecture ideal for modeling large-scale SNNs. Table 1 summarizes their key specifications
and differences. These architectural distinctions directly affect their suitability for control tasks
involving adaptability, learning, and energy sensitivity.

Table 1. Comparative summary of neuromorphic hardware platforms: Loihi, TrueNorth, and
SpiNNaker [1-4]

Platform Process Compute Max Neurons / On-chip Learning  Interconnect/ I/O Representative
Cores Synapses Power/ Notes
~1.3x10"5 . .
128 neuro- Supported On-chip Event-driven;
Intel neurons;
Loihi 14 nm; cores + 3 x86 13%10°8 (programmable  asynchronous NoC; energy per
~60 mm*> management . synaptic plasticity;  chip-to-chip links synaptic event
(2018) synapses (literature . . .
cores online learning)  (board-level scaling) (task-dependent)
approx.)
IBM
TrueNort 4096 1x10"6 neurons; Not supported . =65 mW.
h . . On-chip 2D event- (representative
28 nm neurosynaptic 2.56x10"8 (offline . .
(2014/20 cores SVIADSES training/mapping) routing network chip power)
15) ynap g/mapping SpiNNaker (v1)
28 nm
UMC 18x Software neurons Multicast packet
SpiNNak 130 nm; ARMO968E-S (depends on Supp orted (STDI.) routing; chip-to-chip Nl. W peak per
. . etc. implemented in . chip (180 MHz,
er (vl) ~102  per chip + on- mapping and links; Ethernet host
software on cores) all cores)

mm? chip router system scale) interface

3. Application of neuromorphic chips in robotic control

Neuromorphic chips have been deployed across core robotic-control tasks that demand low latency
and low power. This section groups representative use cases into path planning, obstacle avoidance,
and sensor fusion, highlighting how Loihi, SpiNNaker, and TrueNorth are used in practice.
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3.1. Path planning and navigation

SNN-based controllers can implement spatial representations and reactive policies for navigation.
Loihi has been combined with event-based vision to realize real-time, energy-efficient navigation,
where on-chip learning and event-driven computation reduce latency and power draw compared
with conventional platforms [1,3,5,6]. These properties make Loihi-style architectures suitable for
onboard planning on mobile robots operating under tight energy budgets.

3.2. Obstacle avoidance

Event-driven perception paired with spiking controllers supports fast reflex-like avoidance. Using
dynamic vision sensors as input to SNNs yields microsecond-level response to motion, enabling
rapid detection and evasive maneuvers at low power. TrueNorth prototypes have also been used for
recognition-driven control pipelines, where low-power pattern recognition informs downstream
avoidance or gating actions [4].

3.3. Sensor fusion and motor control

SNNs naturally fuse asynchronous modalities (e.g., vision, IMU/proprioception) via population
codes and spikes. On SpiNNaker, large SNNs have been mapped to multi-core fabrics for closed-
loop locomotion and multi-sensor control, demonstrating scalable real-time performance under strict
power limits [2]. Mixed-signal neuromorphic processors have further shown adaptive motor control
with online learning in the loop, illustrating how spiking controllers can maintain stable behavior
while adapting to perturbations [3,7].

In summary, across path planning, obstacle avoidance, and sensor fusion, neuromorphic
implementations process sensor streams in real time and issue motor commands at substantially
lower energy than CPU/GPU baselines. Loihi enables on-chip adaptation, SpiNNaker scales large
SNN controllers across many cores, and TrueNorth provides ultra-low-power recognition pipelines
that can drive control decisions. These properties make neuromorphic chips well suited for energy-
constrained autonomous platforms.

4. Comparative energy and latency performance

Compared to traditional GPU or CPU-based robotic systems, neuromorphic chips show a significant
advantage in terms of energy-delay product. Loihi, for example, achieved over three orders of
magnitude improvement in energy efficiency when solving optimization problems compared to
CPUs under equivalent process and area constraints [1]. A 2022 study reported a custom SNN
accelerator achieving 0.72mW power consumption and 1.47us latency, far surpassing traditional
embedded controllers [6]. Moreover, neuromorphic architectures benefit from event-driven
operations, meaning they consume power only when computation occurs, unlike synchronous
platforms. These characteristics make them ideal candidates for battery-powered robots and edge Al
systems.

4.1. Energy efficiency

Across control-related workloads, neuromorphic processors report orders-of-magnitude energy
savings over CPU/GPU baselines. For instance, Loihi demonstrates over three orders of magnitude
higher energy efficiency than CPUs on selected optimization problems when normalized for
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process/area, illustrating the benefit of sparse, event-driven computation [1]. Mixed-signal and
digital neuromorphic prototypes also show sub-milliwatt operation in closed-loop settings,
highlighting suitability for battery-powered platforms. In contrast to fixed-throughput synchronous
processors, neuromorphic cores naturally idle with no activity, improving average energy per task.

4.2. Latency and real-time response

Neuromorphic controllers achieve microsecond-to-millisecond control latencies depending on the
task and sensing pipeline. A 2022 study reports a custom SNN accelerator running closed-loop
control at 0.72 mW with 1.47 ps latency, surpassing traditional embedded controllers under
comparable tasks. Event-based perception feeding SNNs further reduces end-to-end delay by
avoiding frame aggregation, which is crucial for high-speed reflexes in navigation and obstacle
avoidance [6].

4.3. Event-driven advantage and EDP

Because spikes occur only when informative events happen, computation and memory access scale
with activity, not wall-clock time. This yields lower energy per inference at similar or better
response times, improving EDP relative to synchronous CPU/GPU pipelines—especially under
sparse sensory input typical of mobile robots.

Neuromorphic chips deliver substantial energy savings and competitive (often superior) latency
for closed-loop robotic control, leading to favorable EDP for edge deployment (see Table 2).

Table 2. Energy and latency metrics reported for representative neuromorphic systems [1,6]

Platform /

Study Benchmark / Task Energy Metric Latency Metric Baseline / Relative
. Optimization > 1000x energy efficiency vs Task-dependent CPU baseline;

Intel Loihi . . o

(2018) problems (event- CPU (under equivalent (event-driven; no qualitative latency

driven SNN) process/area) fixed TDP) advantage
Custom S Closed-loop control Surpasses traditional

accelerator . 0.72 mW 1.47 ps

(2022) micro-benchmarks embedded controllers

5. Challenges and future trends

Despite strong promise, several practical gaps still limit large-scale deployment of neuromorphic
control. First, software toolchains and training remain immature: coding, mapping, and debugging
SNN controllers is fragmented across platforms (e.g., NxSDK/Lava for Loihi, PyNN for SpiNNaker,
legacy Corelet/Compass for TrueNorth), and current training routes (surrogate gradients, ANN-to-
SNN conversion) are not yet turnkey for robotics. A near-term direction is to unify front ends with
PyTorch-compatible APIs and PyNN back ends, provide ROS/ROS2 integration packages and
examples, and standardize model exchange/mapping reports so experiments are reproducible and
portable across chips Second, lack of standardization and interoperability—from model formats to
event-sensor interfaces—raises integration cost with mainstream robotics stacks [8]. Community
efforts should converge on common event-stream formats (for DVS/IMU), ROS2 messaging, and a
minimal SNN IR so the same controller can be compiled to multiple targets with predictable
behavior. Third, benchmarking is inconsistent, with papers mixing chip vs. board power, different
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event rates, and open- vs. closed-loop settings, making cross-platform claims weak. It is
recommended to report full experimental conditions, providing paired CPU/GPU baselines, and
using energy—delay product (EDP) alongside energy and latency on a small suite of canonical
robotics tasks. Fourth, generalization and on-chip adaptation are limited: many SNN controllers are
task-specific and brittle under domain shifts; on-chip learning exists but is constrained by resources
and stability. A practical path is safety-bounded adaptation (e.g., gain tuning/reflex layers) on chip
while keeping a frozen policy backbone, complemented by offline meta-learning or few-shot
updates, as shown in mixed-signal demonstrations of adaptive motor control [1, 6, 7]. Finally,
system-level integration and scaling remain non-trivial: sensor-to-chip I/O, memory locality, and
multi-chip communication can introduce latency/jitter that harms real-time loops. Co-design of
perception and control with activity-aware routing/memory placement, priority-aware inter-chip
links (e.g., SpiNNaker fabric, TrueNorth 2D network, Loihi chip-to-chip links), and standardized
power domains/telemetry for battery operation are promising remedies [9]. Overall, tighter coupling
with edge-Al stacks, stronger and safer on-chip learning, and community benchmarks/standards are
likely to turn today's demos into repeatable, portable controllers for autonomous robots .

This paper reviews the current state and future potential of neuromorphic chips in real-time robotic
control systems, with a particular focus on energy efficiency. Through an examination of
representative neuromorphic platforms such as Intel's Loihi, IBM's TrueNorth, and SpiNNaker, we
summarized their architectural differences, control applications, and performance in terms of energy
consumption and latency. The review demonstrates that neuromorphic computing offers significant
advantages in low-power robotic applications, particularly in scenarios requiring real-time
responsiveness and edge-level deployment.

However, current research faces limitations. The absence of standardized development tools and
training frameworks for spiking neural networks (SNNs) hinders widespread adoption. Additionally,
inconsistent performance benchmarking across platforms complicates direct comparisons and the
selection of suitable hardware for specific applications. These challenges point to the need for
unified programming environments, modular architectures, and real-world validation.

Looking forward, neuromorphic chips are poised to play a crucial role in the evolution of
intelligent and autonomous systems. Integrating neuromorphic hardware with edge AI and
developing hybrid control frameworks could enhance efficiency and adaptability. Future
advancements may also focus on low-power learning algorithms, flexible hardware, and cross-
domain benchmarking, establishing neuromorphic computing as a promising frontier for energy-
efficient, intelligent robotic systems.
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