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Abstract.  In recent years, significant progress has been made in the study of nonlinear Schrödinger equations within the fields of
mathematical physics and nonlinear wave dynamics. However, investigations on the semi-discrete form of coupled local nonlinear
Schrödinger equations remain relatively limited. In this work, within the framework of semi-discrete systems, we impose local reduction
conditions on the coupled nonlinear Schrödinger equation and propose a new integrable semi-discrete two-component coupled local
nonlinear Schrödinger equation. Starting from a semi-discrete     matrix Lax pair, and with the aid of a gauge transformation, explicit
formulas for the Darboux transformation of the system are derived. By selecting appropriate seed solutions, exact solutions of the system
on the zero background are obtained through the constructed Darboux transformation. Furthermore, the dynamical properties of these
solutions are visualized using mathematical software. The results reveal that the system admits typical breather-type soliton solutions,
which exhibit periodic oscillations in the temporal direction and localization in the spatial direction. This study not only deepens the
understanding of soliton dynamics in semi-discrete local nonlinear systems but also provides an effective approach and theoretical
reference for analyzing similar nonlinear wave equations.

Keywords: Darboux transformation, Semi-discrete coupled local nonlinear Schrödinger system,Explicit exact solution.

1. Introduction

The well-known nonlinear Schrödinger (NLS) equation:

(1)

can be regarded as the result of the coupled nonlinear Schrödinger (CNLS) equations:

(2)

(3)

under the reduction   .Equation (2,3) belongs to the well-known AKNS hierarchy, where      and      are two slowly varying complex
envelopes of the propagating waves, the subscripts      and     denote the partial derivatives with respect to normalized distance and time
respectively.

In 2013, Ablowitz and Mussilimani [1] introduced a "nonlocal" constraint on      and     , given by   , which allows the
derivation of the nonlocal nonlinear Schrödinger (NNLS) equation from Equation (2,3):

(4)

Equation (4) exhibits PT symmetry since the nonlinear term      remains invariant under the PT transformation, i.e. 
. Compared to the NLS Equation (1), the key difference is that the nonlinear term      in Equation (1) is

replaced by     in the NNLS Equation (4), which reflects the nature of the anti-spatiotemporal nonlocal coupling between  
  and    .

Ablowitz and Ladik [2] discovered the semi-discrete nonlinear Schrödinger (sd-NLS) equation:

(5)

In recent years, semi-discrete integrable systems have received increasing attention as mathematical models for various physical phenomena,
including nonlinear optics, biology, ladder circuits, and lattice dynamics [3-6].

The studies above primarily focus on single-component continuous and discrete nonlinear Schrödinger equations. However, research on multi-
component nonlinear Schrödinger (MNLS) equations has become a major topic of interest. MNLS equations are crucial dynamical systems in
optics and mathematical physics, describing the simultaneous propagation of multiple nonlinear waves in a homogeneous medium. They find
applications in plasma physics [7], quantum electronics [8], nonlinear optics [9], Bose-Einstein conde-nsates [10], and fluid dynamics [11].

Reference [12] presents the integrable multi-component form of the semi-discrete coupled nonlinear Schrödinger (sd-CNLS) equations:

(6)

(7)

4 × 4

iqt + qxx + 2|q|2q = 0,

iqt = −qxx + 2q2r,

irt = −rxx − 2r2q,

r = −q∗ q r
x  t

q r q(x, t) = r∗(−x, −t)

iqt + qxx + 2q2(x, t)q∗(−x, t) = 0.

V(x, t) = q(x, t)q∗(−x, t)

V(x, t) = V∗(−x, t) 2|q(x, t)|2q(x, t)

2q2(x, t)q∗(−x, t) q(x, t)

q∗(−x, t)

i dQn

dt + (Qn+1 + Qn−1 − 2Qn) + 2 Qn
2
(Qn+1 + Qn−1) = 0.∣ ∣iu̇n

(j) + (u(j)
n+1 + u(j)

n−1)(1 − ∑m
k=1 u(k)

n v(k)
n ) − 2u(j)

n = 0,

iv̇n
(j) − (v(j)

n+1 + v(j)
n−1)(1 − ∑m

k=1 v(k)
n u(k)

n ) + 2v(j)
n = 0, j = 1,2, … , m.
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This study investigates the integrability of these equations, derives an infinite set of conservation laws, and constructs their    -soliton solutions
via the inverse scattering method (ISM). However, to the best of our knowledge, no soliton solutions for this equation have been obtained using the
Darboux transformation.

In this work, we consider the case   and impose the reduction  ,which transforms Equation (6,7) into the following system:

(8)

(9)

We first construct the Darboux transformation for Equation (8,9) by employing a gauge transformation and the associated Lax pair.
Subsequently, we derive the explicit solutions of Equation (8,9) and analyze their dynamical properties.

2. Darboux transformation

According to Ref [13], the auxiliary linear equations corresponding to the semi-discrete coupled local nonlinear Schrödinger Equation (8,9) are
given by:

(10)

(11)

The corresponding Lax pair is given as follows:

(12)

(13)

We may choose

(14)

Thus, the Lax pair becomes:

(15)

Where     is a     matrix, and     is the spectral parameter, which is independent of both     and    .
Substituting the Lax Equation (15,16) into the zero-curvature equation:

(17)

we obtain the equations under investigation:

(18)

(19)

The Darboux transformation is an effective tool for constructing exact solutions of integrable nonlinear equations. To derive the Darboux
transformation for Equation (18,19), we introduce a gauge transformation:

(20)

N

j v
(j)
n = −u

(j)∗
n

iu̇(1) + (u(1)
n+1 + u(1)

n−1)(1 + u(1)
n

2
+ u(2)

n

2
) − 2u(1)

n = 0,∣ ∣ ∣ ∣iu̇(2) + (u(2)
n+1 + u(2)

n−1)(1 + u(1)
n

2
+ u(2)

n

2
) − 2u(2)

n = 0.∣ ∣ ∣ ∣Ψn+1 = NnΨn,

d
dt

Ψn = MnΨn.

Nn = ( )
λI Qn

Rn λ−1I

Mn = i
⎛⎜⎝QnRn−1 − 1

2
(λ − 1

λ )
2I −λQn + 1

λ Qn−1

1
λ Rn − λRn−1 −VnUn−1 + 1

2
(λ − 1

λ )
2I

⎞⎟⎠Qn = ( ), Rn = ( ),
qn rn

r∗
n q∗

n

−q∗
n rn

r∗
n −qn

Nn = ,

⎛⎜⎝ λ 0 qn rn

0 λ r∗
n q∗

n

−q∗
n rn λ−1 0

r∗
n −qn 0 λ−1

⎞⎟⎠Mn = i

⎛⎜⎝− λ2+λ−2

2
− qnq∗

n−1 + rnr∗
n−1 + 1 −qn−1rn + qnrn−1

1
λ qn−1 − λqn

1
λ rn−1 − λrn

−q∗
n−1r∗

n + q∗
nr∗

n−1 − λ2+λ−2

2 − qn−1q∗
n + rn−1r∗

n + 1 −λr∗
n + 1

λ r∗
n−1 −λq∗

n + 1
λ q∗

n−1

− 1
λ q∗

n + λq∗
n−1

1
λ rn − λrn−1

λ2+λ−2

2
+ qn−1q∗

n − rnr∗
n−1 − 1 rn−1q∗

n − rnq∗
n−1

1
λ r∗

n − λr∗
n−1 − 1

λ qn + λqn−1 −qn−1r∗
n + qnr∗

n−1
λ2+λ−2

2 + qnq∗
n−1 − rn−1r∗

n − 1

⎞⎟⎠Ψn 4 × 4 λ n t

d
dt Nn = Mn+1Nn − NnMn,

iqn,t = qn+1 − 2qn + qn−1 + (|qn|2 − |rn|2) (qn+1 − qn−1),

irn,t = rn+1 − 2rn + rn−1 + (|qn|2 − |rn|2) (rn+1 + rn−1).

Ψn[1] = TnΨn,
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where the transformation matrix     is given by:

(21)

Where

By applying the gauge transformation, a spectral problem can be converted into another of the same type, transforming the spectral problem
Equation (10,11) into:

(22)

(23)

Combining Equations (10,11) and (20), we obtain:

(24)

(25)

Here,      and      share the same structure as      and     . By comparing the coefficients of like powers of      on both sides of
Equation (24,25), the matrix     can be simplified as follows:

(26)

By direct calculation, the following relation between the new and old potentials is obtained:

(27)

(28)

Clearly,     is a quartic polynomial in    , implying the existence of     such that    .
Moreover, when    , the vector

is a solution of Equation (10,11). Similarly, when    , the vector

also satisfies Equation (10,11). Therefore, for   , a fundamental set of solutions to Equation (10,11) is given by:

 ,  

 ,   (29)

Thus, Equation (20) can be rewritten as:

(30)

Therefore,when     the vectors

Tn

Tn = λA + λ−1B + C

A = , B = , C = .

⎛⎜⎝a11,n a12,n a13,n a14,n

a21,n a22,n a23,n a24,n

a31,n a32,n a33,n a34,n

a41,n a42,n a43,n a44,n

⎞⎟⎠ ⎛⎜⎝b11,n b12,n b13,n b14,n

b21,n b22,n b23,n b24,n

b31,n b32,n b33,n b34,n

b41,n b42,n b43,n b44,n

⎞⎟⎠ ⎛⎜⎝c11,n c12,n c13,n c14,n

c21,n c22,n c23,n c24,n

c31,n c32,n c33,n c34,n

c41,n c42,n c43,n c44,n

⎞⎟⎠Ψn+1[1] = Nn[1]Ψn[1],

d
dt Ψn[1] = Mn[1]Ψn[1].

Nn[1] = Tn+1NnT−1
n ,

Mn[1] = (Tn,t + TnMn)T−1
n .

Nn[1] Mn[1] Nn Mn λ
Tn

Tn = .

⎛⎜⎝λ + 1
λ b11,n

1
λ b12,n c13,n c14,n

1
λ b∗

12,n λ + 1
λ b∗

11,n c∗
14,n c∗

13,n

c31,n c32,n a33,nλ + 1
λ a34,nλ

c∗
32,n c∗

31,n a∗
34,nλ a∗

33,nλ + 1
λ

⎞⎟⎠qn[1] = qn a∗
33,n+1 − rn a∗

34,n+1 − c∗
31,n+1,

rn[1] = rn a33,n+1 − qn a34,n+1 + c32,n+1.

det T λ λj (j = 1,2, 3,4) det T = 0

λ = λ1

φn(λ1) = (φ1
n(λ1),  φ2

n(λ1),  φ3
n(λ1),  φ4

n(λ1))
⊤

λ = λ∗
1

φn(λ∗
1) = (φ2

n
∗
(λ∗

1),  φ1
n

∗
(λ∗

1),  φ4
n

∗
(λ∗

1),  φ3
n

∗
(λ∗

1))
⊤

λ = λj (j = 1,2)

φn(λ1) = (φ1
n(λ1),φ2

n(λ1),φ3
n(λ1),φ4

n(λ1))
⊤ φn(λ∗

1) = (φ2
n

∗
(λ∗

1),φ1
n

∗
(λ∗

1),φ4
n

∗
(λ∗

1),φ3
n

∗
(λ∗

1))
⊤

ψn(λ2) = (ψ1
n(λ2),ψ2

n(λ2),ψ3
n(λ2),ψ4

n(λ2))
⊤ ψn(λ∗

2) = (ψ2
n

∗
(λ∗

2),ψ1
n

∗
(λ∗

2),ψ4
n

∗
(λ∗

2),ψ3
n

∗
(λ∗

2))
⊤

Ψn 1 = .

⎡⎢⎣ ⎤⎥⎦ ⎛⎜⎝T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎞⎟⎠⎛⎜⎝φ1
n φ2

n
∗ ψ1

n ψ2
n

∗

φ2
n φ1

n
∗ ψ2

n ψ1
n

∗

φ3
n φ4

n
∗ ψ3

n ψ4
n

∗

φ4
n φ3

n
∗ ψ4

n ψ3
n

∗

⎞⎟⎠λ = λj(j = 1,2)
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are linearly dependent. There exist constants     , not all zero, such that:

(31)

Rearranging these equations, we obtain:

(32)

where

(33)

By substituting Equation (26) into Equation (32), the following linear algebraic system is obtained:

(34)

By appropriately selecting   , the determinant of the coefficient matrix in the linear algebraic system (33) can be

ensured to be nonzero. Under this condition, the variables     can be uniquely determined by (34).

3. Explicit exact solutions

This section focuses on obtaining exact solutions of Equation (18,19) through the application of the Darboux transformation (27,28).
Initially, we select the seed solution     In this case, the matrices     and     are given by:

(35)

φn[1](λ1) = Tφn(λ1),  φn[1](λ∗
1) = Tφn(λ∗

1),

ψn[1](λ2) = Tψn(λ2),  ψn[1](λ∗
2) = Tψn(λ∗

2)

α(1)
j , α(2)

j , α(3)
j

T11φ1
n + T12φ2

n + T13φ3
n + T14φ4

n + α(1)
j (T11φ2

n
∗

+ T12φ1
n

∗
+ T13φ4

n
∗

+ T14φ3
n

∗
)

+α(2)
j (T11ψ1

n + T12ψ2
n + T13ψ3

n + T14ψ4
n) + α(3)

j (T11ψ2
n

∗
+ T12ψ1

n
∗

+ T13ψ4
n

∗
+ T14ψ3

n
∗
) = 0,

T21φ1
n + T22φ2

n + T23φ3
n + T24φ4

n + α(1)
j (T21φ2

n
∗

+ T22φ1
n

∗
+ T23φ4

n
∗

+ T24φ3
n

∗
)

+α(2)
j (T21ψ1

n + T22ψ2
n + T23ψ3

n + T24ψ4
n) + α(3)

j (T21ψ2
n

∗
+ T22ψ1

n
∗

+ T23ψ4
n

∗
+ T24ψ3

n
∗
) = 0,

T31φ1
n + T32φ2

n + T33φ3
n + T34φ4

n + α(1)
j (T31φ2

n
∗

+ T32φ1
n

∗
+ T33φ4

n
∗

+ T34φ3
n

∗
)

+α(2)
j (T31ψ1

n + T32ψ2
n + T33ψ3

n + T34ψ3
n) + α(3)

j (T31ψ2
n

∗
+ T32ψ1

n
∗

+ T33ψ4
n

∗
+ T34ψ3

n
∗
) = 0,

T41φ1
n + T42φ2

n + T43φ3
n + T44φ4

n + α(1)
j (T41φ2

n
∗

+ T42φ1
n

∗
+ T43φ4

n
∗

+ T44φ3
n

∗
)

+α(2)
j (T41ψ1

n + T42ψ2
n + T43ψ3

n + T44ψ3
n) + α(3)

j (T41ψ2
n

∗
+ T42ψ1

n
∗

+ T43ψ4
n

∗
+ T44ψ3

n
∗
) = 0

= 0

⎛⎜⎝T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

⎞⎟⎠⎛⎜⎝ 1

β(1)
j

β(2)
j

β(3)
j

⎞⎟⎠β(1)
j =

φ2
n+α(1)

j φ1
n

∗
+α(2)

j ψ2
n+α(3)

j ψ1
n

∗

φ1
n+α(1)

j φ2
n

∗
+α(2)

j ψ1
n+α(3)

j ψ2
n

∗ ,

β(2)
j =

φ3
n+α(1)

j φ4
n

∗
+α(2)

j ψ3
n+α(3)

j ψ4
n

∗

φ1
n+α(1)

j φ2
n

∗
+α(2)

j ψ1
n+α(3)

j ψ2
n

∗ ,

β(3)
j =

φ4
n+α(1)

j φ3
n

∗
+α(2)

j ψ4
n+α(3)

j ψ3
n

∗

φ1
n+α(1)

j φ2
n

∗+α(2)
j ψ1

n+α(3)
j ψ2

n
∗ .

= 0.

⎛⎜⎝λj + 1
λj

b11,n
1
λj

b12,n c13,n c14,n

1
λj

b∗
12,n λj + 1

λj
b∗

11,n c∗
14,n c∗

13,n

c31,n c32,n a33,nλj + 1
λj

a34,nλj

c∗
32,n c∗

31,n a∗
34,nλj a∗

33,nλj + 1
λj

⎞⎟⎠⎛⎜⎝ 1

β(1)
j

β(2)
j

β(3)
j

⎞⎟⎠λj, α
(1)
j , α(2)

j , α(3)
j (j = 1,2, 3,4)

a33,n,  a34,n,  b11,n,  b12,n,  c13,n,  c14,n,  c31,n,  c32,n

qn = 0, rn = 0. Nn Mn

Nn = ,

⎛⎜⎝λ 0 0 0

0 λ∗ 0 0

0 0 λ−1 0

0 0 0 λ∗−1

⎞⎟⎠
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(36)

Thus, the spatial spectral problem     and the temporal spectral problem     admit the following four fundamental
solutions:

(37)

Substituting these fundamental solutions into Equation (33), we obtain:

(38)

Thus, the system of Equation (34) transforms into:

(39)

Rewriting the third and fourth equations, we obtain:

(40)

(41)

Using Cramer's rule, we obtain:

(42)

(43)

Where     and    , are determinants given by:

Mn = i .

⎛⎜⎝− λ2+λ−2

2 + 1 0 0 0

0 − λ∗2
+λ∗−2

2 + 1 0 0

0 0 λ2+λ−2

2 − 1 0

0 0 0 λ∗2
+λ∗−2

2 − 1

⎞⎟⎠Ψn+1 = NnΨn
d
dt Ψn = MnΨn

φn λ = , ψn λ =

xn λ = , yn λ = .

⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝λne
i(− 

λ2+λ−2

2  +1)t

0

0

0

⎞⎟⎠ ⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝ 0

λ∗ne
i(− 

λ∗2+λ∗−2

2  +1)t

0

0

⎞⎟⎠⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝ 0

0

λ−ne
i( λ2+λ−2

2 −1)t

0

⎞⎟⎠ ⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝ 0

0

0

λ∗−ne
i( λ∗2+λ∗−2

2 −1)t

⎞⎟⎠β(1)
j =

α(1)
j λ∗

j
n
e

i − 
λ∗

j
2+λ∗

j
−2

2  +1 t

λn
j e

i − 
λ2

j +λ−2
j

2  + 1 t

= α(1)
j λ∗

j
nλ−n

j e
i(− 

λ∗
j

2+λ∗
j

−2

2  + 
λ2

j +λ−2
j

2 )t

,

β(2)
j =

α(2)
j λ−n

j e

i
λ2

j +λ−2
j

2  −1 t

λn
j e

i − 
λ2

j +λ−2
j

2  +1 t

= α(2)
j λ−2n

j e
i(λ2

j +λ−2
j −2)t

,

β(3)
j =

α(3)
j λ∗

j
−n

e
i

λ∗
j

2+λ∗
j

−2

2  −1 t

λn
j e

i − 
λ2

j +λ−2
j

2  +1 t

= α(3)
j λ∗

j
−nλ−n

j e
i(

λ∗
j

2+λ∗
j

−2

2  + 
λ2

j +λ−2
j

2  −2)t

.

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝ ⎞⎟⎠⎧⎪⎨⎪⎩(λj + b11,nλ−1
j ) + b12,nλ−1

j β(1)
j + c13,nβ

(2)
j + c14,nβ

(3)
j = 0

b∗
12,nλ−1

j + (λj + b∗
11,nλ−1

j )β(1)
j + c∗

14,nβ
(2)
j + c∗

13,nβ
(3)
j = 0

c31,n + c32,nβ
(1)
j + (a33,nλj + λ−1

j )β(2)
j + a34,nλjβ

(3)
j = 0

c∗
32,n + c∗

31,nβ
(1)
j + a∗

34,nλjβ
(2)
j + (a∗

33,nλj + λ−1
j )β(3)

j = 0

c31,n + β(1)
j c32,n + λjβ

(2)
j a33,n + λjβ

(3)
j a34,n = −λ−1

j β(2)
j .

c31,nβ
(1)
j

∗
+ c32,n + a33,nλ∗

j β
(3)
j

∗
+ a34,nλ∗

j β
(2)
j

∗
= −λ∗

j
−1β(3)

j

∗
.

c31,n =
Δ2,n

Δ1,n
,

c32,n =
Δ3,n

Δ1,n
,

Δ1,n Δ2,n, Δ3,n
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(44)

(45)

(46)

By substituting the seed solution into Equation (27,28), the new solution is obtained as follows:

(47)

(48)

In order to gain a clearer understanding of the obtained solutions and to investigate their dynamical properties, we define     and choose
the parameters as:     and 

 .Under this choice of parameters, a
one-soliton solution of the two-component semi-discrete coupled nonlinear Schrödinger equation on the zero background is obtained, as
demonstrated in Figure 1. This solution corresponds to a breather, exhibiting periodic oscillations in the temporal direction, with its amplitude
alternating between growth and decay. Along the    -axis, the solution decays exponentially, which can be interpreted as the interaction between a
soliton and its counterpart. Furthermore, the solution maintains its localized profile throughout the propagation process.

Figure 1. Single-soliton solution of the semi-discrete coupled local nonlinear Schrödinger equation on zero background

4. Conclusion

In this paper, we focus on the investigation of a two-component integrable semi-discrete coupled local nonlinear Schrödinger equation. Based on
the Lax pair, the Darboux transformation (DT) of the system is constructed, and its validity is established through a formal proposition. By
choosing appropriate parameters, breather solutions on the zero background are derived. Furthermore, the dynamical behaviors of these solitons are
analyzed in detail. The results of this work further reveal novel dynamical distributions of the nonlinear coupled local Schrödinger equation. The
proposed approach can also be applied to soliton equations arising from nonlinear local problems in physics and mathematics.
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