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Abstract.  Culex tritaeniorhynchus is a primary vector of Japanese encephalitis and other
diseases, with population dynamics highly sensitive to climatic conditions. Predicting its
distribution relies on understanding the correlation between mosquito density and
meteorological factors. In this study, the Random Forest model, an innovative machine
learning approach for classification and regression, was used to simulate monthly variations
in mosquito density around key future time points (2030 and 2090). Simulations integrated
four CMIP6 scenarios (SSP126, SSP245, SSP370, and SSP585). Results indicated an
overall increase in peak mosquito density over time, accompanied by a delayed seasonal
peak. Significant density variations were observed across scenarios, with the highest
radiative forcing scenario (SSP585) exhibiting the most pronounced increase: by August
2090, mean density reached 0.51 ± 0.01 mosquitoes/(lamp·hour), and the maximum monthly
density rose to 1.09 mosquitoes/(lamp·hour). Under the SSP370 scenario, the mean density
in August 2090 was also elevated, at 0.52 ± 0.01 mosquitoes/(lamp·hour). These findings
suggest that climate change will substantially increase the density of Culex
tritaeniorhynchus and shift its seasonal peak, potentially exacerbating public health and
ecological risks. This study represents a methodological advance from traditional vector
distribution forecasting to quantitative density prediction, providing a critical foundation for
precise early warning and control of mosquito-borne diseases in high-risk regions. It offers
practical implications for safeguarding public health.
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1. Introduction

Culex tritaeniorhynchus has garnered significant attention among mosquito species due to its
considerable impact on both public health and ecological systems. This mosquito species acts as a
vector for several diseases, such as Japanese encephalitis, which presents serious risks to human
health [1]. Moreover, Culex tritaeniorhynchus exhibits high sensitivity to meteorological variables
such as temperature and precipitation, which directly influence its survival and reproductive rates
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[2]. Against the backdrop of accelerating global climate change, future shifts in meteorological
conditions are expected to modify the species' distribution and population density. These changes
may, in turn, profoundly affect human habitats, underscoring the urgency and importance of
studying its future dynamics.

In recent years, species distribution models (SDMs) have emerged as a key methodology across
various fields, including pest control, by addressing diverse ecological and spatial challenges [3].
SDMs are grounded in the theoretical framework of species' spatiotemporal niches within
ecosystems, capturing their interactions with the environment and other species. It enables both
reconstruction of current distributions and projection of future species ranges [4]. For instance, Liu
et al. used SDM to demonstrate that Culex mosquitoes are currently widespread across southern,
central, and coastal regions of China, with future northward expansion anticipated [5]. However,
most studies on mosquito ecology have focused primarily on distributional prediction and neglected
density prediction [6]. Predicting density is essential for accurately evaluating mosquito impacts on
public health and ecosystems: even with range expansion, low density may mitigate harm, whereas
unchanged ranges accompanied by density increases can intensify health and ecological threats.

To address this gap, the present study employs species distribution modeling integrated with
future climate scenario data to simulate monthly variations in Culex tritaeniorhynchus density for
the years 2030 and 2090. Beyond filling a methodological void in density prediction, this work
provides a scientific basis for refining mosquito control strategies. It supports early warning systems
for mosquito-borne disease risks, helps safeguard human health and ecological security, and offers
insights for addressing broader issues such as biological invasions and ecological resilience under
climate change.

2. Data and methods

2.1. Data sources

Data on Culex tritaeniorhynchus density in China were obtained from the study of Wang et al [7],
which integrated mosquito surveillance data from the literature available up to August 2024. To
enhance data volume, this dataset will be updated to July 2025 by following the same literature
search, data collection, and quality control procedures as described in that study. Mosquito density
values were uniformly converted to units of individuals/(lamp·hour). A total of 9 publications were
included, contributing 145 data entries.

The variables of the influence factor are shown in Table 1. Historical month-by-month
meteorological data were obtained from the National Oceanic and Atmospheric Administration
(NOAA, https://www.noaa.gov/). Temperature, humidity, precipitation, atmospheric pressure, and
wind speed were used as the main meteorological variables potentially influencing mosquito density.
In order to avoid meteorological averages that reduce the impact of climatic extremes, this study
included as many secondary variables as possible to characterize the strength of each meteorological
factor, as shown in Table 1. Considering the potential lag effect between meteorology and mosquito
density, based on previous studies, in addition to the meteorological conditions of the current month,
this study coupled the meteorological conditions of the previous month and the previous two months
with the mosquito density of the current month [8,9]. Where L0, L1, and L2 correspond to the
current month, the previous month, and the previous two months, respectively. The density data of a
particular mosquito species were used as the dependent variable, and a total of 39 meteorological
secondary variables were used as independent variables. The future meteorological data were
obtained from the BCC-CSM2-MR model from the National Climate Center
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(https://aims2.llnl.gov/search/cmip6/) for the years 2030 and 2090 [10]. Four Shared Socioeconomic
Pathway (SSP) scenarios from the CMIP6 framework were selected to project a range of plausible
future climates: SSP126, SSP245, SSP370, and SSP585. These scenarios correspond to low,
medium, high, and very high greenhouse gas (GHG) emission trajectories, respectively [11]. The
units of future and historical meteorological data were kept consistent. Considering the spatial
heterogeneity of mosquito distribution, the latitude and longitude of the monitoring data of raw
mosquito density were included in this study. Geographic coordinates data were collected from
Amap (https://www.amap.com/), which were consistent with the study by Wang et al [7] .

Table 1. Variables of the influence factors

Primary variables Secondary variables Abbreviation Unit

Temperature

Average air temperature Tavg ℃
Average maximum temperature Tmax ℃
Average minimum temperature Tmin ℃
Maximum temperature extreme TmaxE ℃
Minimum temperature extreme TminE ℃

Humidity Relative humidity RH %

Precipitation
Cumulative precipitation P mm

Maximum precipitation on a single day Pmax mm
Number of days with precipitation Pn day

Barometric Pressure Sea level pressure SLP hPa

Wind Speed
Average wind speed Wavg m/s

Average maximum sustained wind speed Wsus m/s
Maximum average wind speed on a single day Wmax m/s

Geographic coordinates
Longitude Lon °
Latitude Lat °

2.2. Random forest

This study employs the Random Forest model, an ensemble learning method capable of performing
both classification and regression tasks [12]. By constructing multiple decision trees and aggregating
their predictions, Random Forest enhances predictive accuracy [13] and effectively mitigates the
risk of overfitting [14]. The model can handle a large number of input variables and incorporates
randomness in both feature and sample selection, enabling it to capture complex nonlinear
relationships and high-dimensional data structures [15].

A challenge in this study is the presence of missing values, as mosquito density monitoring is
primarily concentrated in summer and autumn, leaving gaps for other months in future
meteorological datasets. To address this, we innovatively leveraged the dual functionalities of the
Random Forest algorithm. First, its classification capability was employed to handle missing data by
determining the presence or absence of mosquito distribution based on all influencing factors.
Subsequently, regression analysis was conducted between the density of Culex tritaeniorhynchus
and the explanatory variables to establish density predictions in areas where the species is present.

To thoroughly evaluate the model’s robustness and stability and to minimize fluctuations due to
randomness in a single simulation, the experimental procedure was repeated 1000 times [16]. All
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model performance metrics, including Out-of-Bag (OOB) error, Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and R2, were averaged and reported to reflect the generalization ability
of the model.

3. Results

3.1. Modeling performance

As shown in Figure 1, the random forest model achieved an average Out-of-Bag (OOB) error of
0.86 ± 0.01, indicating high accuracy in the classification task. For the regression component, the
mean absolute error (MAE) and root mean square error (RMSE) were 0.19 ± 0.01 and 0.28 ± 0.01,
respectively, both of which are relatively low and suggest a close agreement between predicted and
actual values. Additionally, the model yielded an average R² value of 0.49 ± 0.02, reflecting a
moderate degree of fit to the data.

Figure 1. Model performance

In order to explore the key environmental factors affecting mosquito density, a range of climatic
and environmental variables were statistically analyzed in this study. Table 2 demonstrates the top
ten factors with the most significant impact on mosquito density, including the mean and standard
error. By analyzing the means and standard errors of these factors, the results show that the
meteorological factors of the current month have a significantly higher effect on mosquito density
than those of the lagging month. Temperature, barometric pressure and relative humidity were the
most critical environmental factors affecting mosquito density. The analysis of temperature revealed
that the mean minimum air temperature of the month had a higher effect on mosquito density than
the mean air temperature of the month. This suggests that the minimum temperature is more critical
than the mean temperature in constraining or facilitating mosquito population dynamics in the study
area and time period.
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Table 2. The importance of the top ten main influencing factors affecting the density of culex
tritaeniorhynchus

Variables Mean Standard error

L0_Tmin 5.05 0.02
L0_Tavg 5.02 0.02
L0_Tmax 4.25 0.02
L0_TminE 3.75 0.02

L0_SLP 3.42 0.02
L1_SLP 3.40 0.02
L0_RH 2.80 0.03

L0_TmaxE 2.10 0.02
L0_P 1.77 0.03

3.2. Trends in the density of culex pipiens in three bands in 2030 and 2090

This study analyzes the month-by-month trends under four future climate scenarios. As shown in
Figure 2, under climate scenario SSP126, in 2030, the density gradually increases from 0
individuals/(lamp·hour) in January to a maximum value of 0.42 individuals/(lamp·hour) in July, and
then gradually decreases. In 2090, the trend of density was different, increasing from 0
individuals/(lamp·hour) in January to 0.44 individuals/(lamp·hour) in August and then decreasing.
Comparison of the 2030 and 2090 data shows that there is some difference in densities around the
turn of the century, with overall higher densities in some months in 2090, which may be related to
factors such as climate change. The month-by-month trends under the other climate scenarios show
a similar pattern of change, but with differences in specific values and peak months. For example,
under climate scenario SSP245, the peak density in 2030 occurs in July, while in 2090 it occurs in
August, and the peak density in 2090 is significantly higher than that in 2030. Under climate
scenarios SSP370 and SSP585, the peak density in 2090 is also higher than in 2030, and the month
of peak occurrence is delayed. By analyzing the month-by-month densities under the four climate
scenarios, we can better understand the trends of density changes under different time and climate
conditions, and provide references for related research and applications. These results suggest that
the density and distribution of Culex tritaeniorhynchus will change significantly with the
intensification of climate change, especially in 2090, with a significant increase in density in some
months, which may trigger more serious health and ecological problems.
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Figure 2. Comparison of month-by-month distribution of mosquito densities under four climate
scenarios in 2030 and 2090. Units: individuals/(lamp·hour)

In analyzing the impact of climate change on the distribution of Culex tritaeniorhynchus, we paid
special attention to the shift of the center of distribution of maximum density between 2030 and
2090 under the four climate scenarios. As shown in Figure 3, by comparing the maximum density
distribution maps under different years and scenarios, this study found that under the SSP126
scenario, the distribution area of Culex tritaeniorhynchus was relatively stable without significant
east-west and north-south shifts. Secondly, under the SSP245 scenario, the center of maximum
density distribution shifted from 22.84° N, 111.95° E in 2030 to 32.87° N, 111.95° E in 2090,
showing a significant shift towards the north. This northward shift may imply that the distribution
area of Culex tritaeniorhynchus extends northward under the SSP245 scenario, which may lead to an
increase in the range of people affected by Culex tritaeniorhynchus and the diseases it carries in the
northern region. In SSP370 scenario, the center of distribution of maximum density shifted from
23.96° N, 112.71° E in 2030 to 32.87° N, 116.07° E in 2090, showing a shift towards north and east.
This offset may indicate that under the SSP370 scenario, the distribution area of the three-banded
beaked Culex mosquito not only expands to the north, but also migrates to the east, further
expanding the affected geographic range. Finally, under the SSP585 scenario, the center of
maximum density distribution shifted from 23.96° N, 110.47° E in 2030 to 21.73° N, 108.22° E in
2090, showing a southward and westward shift. This shift may imply that the distribution area of
Culex tritaeniorhynchus migrates southward and westward under the SSP585 scenario, which may
lead to an increase in the range of populations affected by Culex tritaeniorhynchus and the diseases
it carries in the southern and western regions. In summary, the shifts in the center of maximum
density distribution of Culex tritaeniorhynchus under different scenarios suggest that the distribution
area of Culex tritaeniorhynchus may undergo significant east-west and north-south shifts with
climate change, which will lead to an increase in the geographic range of the affected area, and thus
an increase in the range of populations affected by Culex tritaeniorhynchus and its carrier diseases
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throughout China. This finding is important for the development of targeted prevention and control
strategies of public health

Figure 3. Comparison of month-by-month maximum Culex tritaeniorhynchus density under four
climate scenarios in 2030 and 2090. Units: individuals/(lamp·hour)

4. Discussion

The findings of this study are highly consistent with those of other studies on the impact of climate
change on the distribution of vector organisms. For example, the study by Barker et al [17] states
that mosquito vector distribution models (SDM) need to consider the effects of climate change on
species distribution when predicting changes in mosquito distribution. They emphasized that despite
the important role of SDM in predicting mosquito distributions, its quality still needs to be
improved, especially in terms of predictor variables and model evaluation. This is similar to the
prediction results in this study on Culex tritaeniorhynchus, which showed significant changes in
distribution range and density with climate warming. In addition, the study by Liu et al [1] also
found that climate warming may increase the breeding rate and survival of mosquitoes, thus
increasing the risk of disease transmission. They simulated the current and future distribution of
Aedes aegypti and Aedes albopictus in mainland China using the Maxent ecological niche model,
and the predicted results showed that the suitable habitats of both mosquitoes would be significantly
expanded under future climate scenarios. This further supports the hypothesis of this study that
climate change will have a significant impact on the distribution of Culex tritaeniorhynchus.

The present study further found that there were significant differences in the density changes of
Culex tritaeniorhynchus under different climate scenarios. For example, under climate scenario
SSP585, the highest peak density was observed in 2090, which may be related to the higher
temperature degrees and more precipitation predicted under this scenario [11]. These conditions
favor mosquito breeding and survival, leading to a significant increase in their density. This finding
suggests that climate change will not only alter the distribution range of vector organisms, but will
also significantly affect their population densities, thereby increasing the risk of disease
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transmission. In addition, it was also noted in this study that although changes in the distribution and
density of Culex tritaeniorhynchus varied among different climate scenarios, the overall trend was
an increase in both its range and density. This suggests that the ecological niche of Culex
tritaeniorhynchus may expand further with increasing climate change, thus posing a greater threat to
public health. Therefore, it is particularly important to develop effective mosquito control strategies,
especially in the predicted high-risk areas.

The predicted results of this study provide new directions for future research. For example, the
specific mechanisms by which different climatic elements affect the density of Culex
tritaeniorhynchus could be further explored, and how species distribution models could be more
effectively utilized to predict and respond to the impacts of climate change on the distribution of
vector organisms. In addition, future research could also focus on the following aspects: first,
microclimatic conditions (e.g., local temperature, humidity, and precipitation) have a significant
impact on the survival and reproduction of vector organisms. An in-depth study on how
microclimate affects the distribution and density of Culex tritaeniorhynchus can provide a strong
basis for the development of more precise prevention and control strategies. Secondly, with climate
change, the population dynamics and ecological niche of vector organisms may undergo significant
changes. Studying these changes will help us better understand the response mechanism of vector
organisms to climate change, and thus more effectively predict their future distribution trends and
potential risks. Finally, a more comprehensive assessment of the impacts of climate change on the
distribution of vector organisms and disease transmission requires a combination of
multidisciplinary research approaches in ecology, meteorology, epidemiology and public health.
This interdisciplinary research model can integrate data and theories from multiple sources to
provide more scientific and systematic support for public health decision-making.

5. Conclusion

In this study, changes in the density of the three-banded beaked Culex mosquito were simulated and
predicted by species distribution modeling combined with data from future climate scenarios. The
results suggest that the density and distribution of Culex tritaeniorhynchus will change significantly
with the intensification of climate change, especially in 2090, with a significant increase in the
density in some months, which may cause more serious health and ecological problems. This finding
is highly consistent with the results of other studies on the impact of climate change on the
distribution of vector organisms. Therefore, it is particularly important to develop effective mosquito
control strategies, especially in the predicted high-risk areas. In addition, this study provides new
directions for future research, such as further exploring the specific influence mechanisms of
different climatic elements on the density of Culex tritaeniorhynchus, investigating microclimate,
population dynamics, and ecological niche changes, as well as carrying out interdisciplinary studies
to more comprehensively assess the impacts of climate change on the distribution of vectorial
organisms and the spread of diseases.
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