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Traditional technologies for new drug research and development face numerous
challenges, such as the lack of high-success-rate tools for virtual design of drug molecules
based on protein three-dimensional structures (a limitation to research and development
efficiency), the absence of reliable methods for generating new scaffold drug molecules, and
a shortage of fast, reliable, low-cost models for drug toxicology prediction. Al can
accurately predict protein structures to accelerate target design, efficiently generate new
scaffold molecules adapted to targets, and greatly enhance the generalization ability of
protein-ligand binding predictions. Some Al models have shown excellent performance in
pharmacotoxicology prediction and treatment evaluation. These new technologies
significantly shorten research and development cycles, reduce costs, improve prediction
accuracy and efficiency, and drive the transformation of new drug research and development
from experience-driven to data-driven approaches. This article reviews the application status
and progress of Al tools in drug research and development, which focuses on two areas: Al-
driven cancer drug target identification and optimization, and toxicology prediction and
evaluation tools.
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The application of Artificial Intelligence (AI) in the pharmaceutical industry has advanced
considerably over the past few years. Continuous advancements in Al technologies have driven
innovation in drug discovery and development, as well as clinical treatment models [1]. In the early
stages, Al-generated visualization systems for molecular structures and chemical properties were
developed. These tools provided researchers with more intuitive representations of molecular forms,
which lay a solid foundation for drug design processes. With the progression of deep learning
algorithms and complex computational models, Al has achieved remarkable breakthroughs in drug
discovery and development applications, which significantly shorten the time required to identify
candidate drugs by precisely predicting molecular interactions [2]. Al has also demonstrated high
efficiency in critical processes such as tumor target identification and high-throughput screening
(HST) [2,3]. This has facilitated the transformation of new drug innovation and development from
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traditional experience-driven approaches to data-driven methods, which improve the overall
effectiveness of pharmaceutical research.

Currently, Al can integrate multiple types of data to optimize drug dosage and manufacturing
processes, reduce research and development costs, accelerate technology transfer, and provide
technological support [1]. The deep integration of Al into the end-to-end drug discovery process has
become a key future development direction. In clinical precision therapy, the fusion of Al and
medical big data has catalyzed a new model of personalized treatment. By using comprehensive
genomic sequencing databases and electronic medical record (EMR) systems, Al can integrate
multidimensional data including patient genomic features, clinical phenotypes, and treatment
response feedback, to construct accurate models for predicting medication use [4-6]. In summary,
the in-depth application of artificial intelligence in fields such as drug target design, property
prediction, and clinical applications has been widely recognized. This article focuses on elaborating
on artificial intelligence in two areas: drug target design and pharmacotoxicological property
prediction.

Protein three-dimensional structure analysis is fundamental to drug target design, but traditional
methods are time-consuming and rely heavily on experiments, which limit drug development
efficiency. AlphaFold predicted the structure of CDK20 while Chemistry 42 designed and
synthesized 8,918 compounds [4]. Ultimately, biological tests were conducted on the seven most
promising compounds. In the initial screening, the binding constant (Kd) of compound ISM042-2-
001 with CDK20 was 8.9 + 1.6 puM. In the second round of Al-driven compound generation, a more
active compound, ISM042-2-048, was identified with a Kd of 210.0 & 42.4 nM. The entire process,
from target screening to inhibitor identification, took only 30 days with only 13 compounds
synthesized. This study provides a new framework for using AlphaFold to accelerate drug discovery.
It 1s the first to apply AlphaFold in drug discovery, which demonstrates its potential in structure
prediction and drug design. By integrating AlphaFold with Al platforms, an efficient transition from
target selection to inhibitor identification has been achieved.

Generative drug design holds the potential to explore vast chemical spaces and discover novel
compounds, but molecules generated by existing methods are often impractical due to poor
physicochemical properties or lack of biological validation. To address this, Wu et al. proposed
TamGen, a target-aware molecule generation method based on a chemical language model [5].
TamGen consists of three core modules: a GPT-like compound decoder (pre-trained on 10 million
SMILES) responsible for molecule generation, a Transformer protein encoder processing target
binding pocket information, and a VAE contextual encoder assisting in compound optimization. On
the CrossDocked2020 dataset, compounds generated by TamGen ranked among the top two across 5
metrics, with 100 compounds generated in just 9 seconds, 394 times faster than 3D-AR. For
Mycobacterium tuberculosis ClpP, 14 inhibitors were identified, with the optimal one having an
IC50 of 1.9 uM. Compared with 3D generation methods such as iGAN, TamGen compounds have
1.78 fused rings (close to FDA-approved drugs) and better synthetic accessibility, which
demonstrates significant advantages in target-specific drug design. Moreover, TamGen generated
2,612 unique compounds, from which four leads were identified. Refinement produced 8,635
derivatives, with 296 tested experimentally. From a commercial library of 446,000 molecules, 159
structural analogs were identified, and five showed strong inhibitory activity (IC50 < 20 uM). The
best candidate, Analog-005, achieved an IC50 of 1.9 uM. TamGen also showed high efficiency,
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generating 100 molecules in 9 seconds, much faster than ResGen, TargetDiff, Pocket2Mol, and 3D-
AR.

Protein-ligand binding prediction represents a critical step in drug discovery, but existing deep
learning models often rely on the topology of protein-ligand bipartite networks rather than molecular
features, which resultes in poor generalizability to novel structures. To address this, Al-Bind
combines network sampling strategies with unsupervised pre-training, balancing positive and
negative samples through protein-ligand pairs with a shortest path distance of > 7, and using larger
chemical libraries for pre-training molecular embeddings to learn more structural patterns [6]. Its
VecNet model performs excellently in inductive tests, with an AUROC of 0.75 £ 0.032 and an
AUPRC of 0.718 £ 0.029, which significantly outperform DeepPurpose (AUROC 0.61 + 0.074) and
MolTrans (AUROC 0.612 + 0.028) [6]. In predictions for COVID-19-related proteins, 74 out of 84
top predictions were validated by docking (F1-Score = 0.82), and it can identify active binding sites
such as pockets in Trim59 [6]. Compared to models relying on topological shortcuts, AI-Bind has
significant advantages in predicting novel molecules, providing a high-throughput tool for drug-
target screening.

ScreenDL is a new deep learning framework designed for clinical precision oncology. The model
uses two separate branches to capture drug chemical information and tumor transcriptomic features,
which are integrated in a shared sub-network. This network predicts drug activity by measuring the
half-maximal inhibitory concentration (IC50). ScreenDL uses a three-step training process: pre-
training, transfer learning, and patient-specific fine-tuning. In real tests, the model used data from 50
patients with triple-negative breast cancer (TNBC), along with patient-derived xenografts (PDX)
and patient-derived tumor organoids (PDxO). After the three training steps, the model’s predictive
performance improved significantly. In pre-training, ScreenDL achieved a median Pearson
correlation of 0.15 per drug, far better than the baseline model’s 0.03. After transfer learning, the
correlation rose to 0.39, and after patient-specific fine-tuning, it reached 0.51. This demonstrates
clear improvement in clinically relevant predictions [7].

Drug-induced liver injury (DILI) is a major reason for drug development failure and withdrawal.
Rapid, reliable prediction tools are therefore critical. Zheng et al. developed an Al model called
DILITracer, which predicts DILI levels using brightfield images of human liver organoids (HLOs).
The study included three steps: drug treatment, image collection, and model training. Researchers
selected 30 drugs with varying liver toxicity levels from the FDA DILIrank database, treated HLOs
with these drugs, and collected numerous brightfield images across different times and focal planes
to build training and validation datasets. DILITracer uses the BEiT-V2 visual transformer to extract
image features, with pre-training on approximately 700,000 cell images to enhance recognition of
HLO morphological changes. Researchers added spatial encoding (ViT module) and time encoding
(Bi-LSTM) to capture temporal changes. The model can make predictions from single images and
track liver toxicity development using time-series data. It achieved an overall prediction accuracy of
82.34%, with 90.16% accuracy for no-liver-toxicity (NO-DILI) drugs, and can classify drugs into
three levels: Most-DILI, Less-DILI, and No-DILI. This approach is more aligned with clinical needs
than simple yes/no classification. This study shows that combining organoid models, brightfield
imaging, and Al provides a fast, scalable, human-relevant method for predicting liver toxicity.
Future work should integrate pharmacokinetic and toxicity data to enhance clinical utility [8].

Di Stefano et al. developed VenomPred 2.0, which aggregates data from databases such as
ToxCast/Tox21 and ChEMBL, and utilizes 4 classification algorithms including random forest and
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support vector machine, combined with Morgan, RDKit, and PubChem chemical fingerprints to
construct 12 models for each toxicity endpoint [9]. Prediction results showed excellent performance
in androgenic activity prediction (MCC > 0.90), with an average MCC of ~0.50 for acute oral
toxicity prediction (best model = 0.55) and over 75% accuracy for toxicological predictions of test
set compounds (0.78). The average MCC for eye and skin irritation predictions was ~0.40 (highest =
0.44 and 0.49, respectively). The best models are based on the MLP algorithm, with precision
indicating that at least 65% of compounds predicted to be toxic are correctly labeled, and specificity
scores exceeding 0.80, which show high reliability in predicting harmless compounds. Both models
achieved over 0.75 accuracy. VenomPred 2.0 provides visual results and uses the SHAP method to
explain toxicity predictions, which identifies toxic-related structures such as the dihydrofuran
moiety in AFB1 and the phenolic fragment in 6-ketoestrone. Compared with other tools, it covers a
wider range of toxicity endpoints and performs better on most prediction metrics, which offer
significant advantages in toxicological prediction for drug development and helping researchers
efficiently evaluate small molecule toxicity [10].

Traditional drug development has long been constrained by the inefficiency of experience-driven
models, with notable bottlenecks in target discovery accuracy, molecular design innovation, and
forward-looking safety assessment, which results in lengthy development cycles and substantial
resource consumption. In recent years, the deep integration of artificial intelligence technologies has
brought revolutionary breakthroughs to this field. Through precise analysis of protein structures,
artificial intelligence accelerates target validation; relies on generative models to expand the design
space for novel molecular scaffolds; and leverages multimodal data integration to enhance the
generalization ability of drug activity and toxicity predictions. These advancements fundamentally
reshape the entire workflow logic of drug development, which drive the industry toward a data-
driven, precision-oriented paradigm. In the development of drugs for complex diseases such as
cancer, artificial intelligence not only enables efficient connectivity from target identification to
candidate compound optimization but also demonstrates potential surpassing traditional methods in
critical areas like toxicological evaluation, which provide new solutions for balancing drug safety
and efficacy. Such technological empowerment is reflected not only in improved research efficiency
but also in breaking the cognitive boundaries of traditional research, which turns previously
inaccessible chemical spaces and biological mechanisms into exploitable new frontiers. However,
the application of artificial intelligence in drug development still faces multidimensional challenges.
Issues such as standardized integration of multi-source data, mechanistic interpretation of complex
biological systems, and expansion of model generalization boundaries have not yet been fully
resolved. Going forward, interdisciplinary integration should serve as the pathway. Through
algorithm iteration and data ecosystem construction, the interpretability and reliability of models
must be strengthened. This will drive artificial intelligence from an auxiliary tool to a decision-
making hub, ultimately achieving intelligent, personalized, and accessible drug development, and
providing sustainable innovative momentum for global health initiatives.
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