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Abstract. The development of induced pluripotent stem cell (iPSC) technology has opened
new avenues for understanding and treating neurological disorders. iPSCs possess unlimited
self-renewal and pluripotent differentiation capabilities, enabling their use in disease
modeling, mechanism studies, and high-throughput drug screening. Compared with
traditional treatments that mainly alleviate symptoms, iPSC-based approaches offer unique
advantages in regenerative medicine by providing patient-specific cell sources for neuronal
replacement, modulating immune responses, and promoting endogenous repair. Recent
advances have demonstrated the application of iPSC-derived models in major neurological
disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and spinal cord
injury (SCI). In AD research, iPSC-derived brain organoids have successfully reproduced
key pathological hallmarks such as Aβ deposition and Tau hyperphosphorylation, serving as
valuable platforms for drug discovery. For PD, iPSC-derived dopaminergic neurons and
midbrain-like organoids have revealed critical pathogenic mechanisms and shown potential
in transplantation therapy. In SCI, preclinical studies highlight the ability of iPSC-derived
neural progenitors and engineered grafts to promote axonal regeneration and functional
recovery. This review summarizes current progress, discusses challenges such as
tumorigenicity and immune rejection, and explores future strategies to accelerate clinical
translation.
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1. Introduction

Neurological diseases are a major cause of death and disability worldwide, and their global burden
continues to rise, largely due to population aging, environmental changes, metabolic disorders, and
lifestyle factors [1]. Despite decades of research, most treatments remain pharmacological and
primarily provide symptomatic relief. Traditional drug therapy faces significant challenges: (1)
heterogeneous etiologies hinder targeted intervention, often causing off-target effects [2]; (2) the
blood-brain barrier limits drug delivery and individual variability affect outcomes [3]; and (3) long-
term medication can lead to severe adverse effects [4]. Therefore, innovative and precise therapeutic
strategies are urgently needed.
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In recent years, pluripotent stem cells (PSCs) have emerged as a promising platform for
neurological disease research and treatment because of their self-renewal and multidirectional
differentiation capabilities. Unlike totipotent stem cells, PSCs cannot form a complete organism but
can be derived from somatic cells through induced pluripotent stem cell (iPSC) technology, avoiding
ethical concerns and enabling controlled differentiation. These properties support wide applications
in regenerative medicine, disease modeling, and drug discovery.

In the treatment of neurological diseases, PSC-based transplantation offers distinct advantages
over conventional pharmacotherapy: (1) PSCs can be precisely directed to differentiate into specific
neuronal or glial subtypes using gene-editing technologies, thereby minimizing side effects and
enhancing therapeutic efficacy [5]; and (2) PSCs can be integrated with drug delivery systems to
achieve more accurate, targeted interventions [6]. Furthermore, PSCs enable the establishment of
physiologically relevant disease models, facilitate mechanistic studies, and support the preclinical
safety assessment of novel therapeutics. At present, clinical trials investigating PSC-based
interventions have been initiated for several neurological disorders, including Parkinson’s disease,
spinal cord injury, epilepsy, and amyotrophic lateral sclerosis.

This review summarizes recent advances in PSC applications for neurological disorders,
emphasizing roles in regeneration, disease modeling, and personalized therapy, and explores future
clinical translation.

1.1. Types and preparation of PSC

PSC possess self-renewal and multilineage differentiation capabilities, enabling the generation of
specialized cell types for regenerative medicine and personalized therapy. Major PSC sources
include embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem
cells (MSCs), and expanded potential stem cells (EPSCs). Among these, iPSCs are particularly
valued for their derivation from somatic cells, avoidance of ESC-related ethical issues, large-scale
expansion potential, and suitability for autologous transplantation, reducing immune rejection [7, 8].
MSCs, as a non-embryonic stem cell source, have been extensively applied in neurological disease
research and therapy due to their immunomodulatory and neuroprotective properties [9]. EPSCs,
characterized by broader developmental potential and superior neural differentiation capacity, have
emerged as a promising cell type for treating neural injuries and neurodegenerative disorders [10].

At present, approaches for reprogramming somatic cells into iPSCs include: (1) the ectopic
expression of transcription factors-classically Oct3/4, Sox2, Klf4, and c-Myc (OSKM) [11]; (2)
microRNA-mediated induction, such as the combined action of miRNA302/367 with HDAC2
modulation [12]; and (3) chemical reprogramming using small molecules such as VC6T and
forskolin (FSK) [13].

Initially, iPSC generation relied on integrating reprogramming genes into the host genome via
viral vectors, including retroviruses [11]. With technological advancements, non-viral delivery
systems have increasingly become the preferred approach. For example, reprogramming factors can
be introduced by direct RNA delivery through electroporation, by cationic carriers facilitating RNA
transfection, or via cell-penetrating peptides (CPPs) enabling efficient intracellular protein delivery
[14-16]. Compared with viral vectors, non-viral systems reduce the risk of insertional mutagenesis
and host immune activation, thereby improving safety profiles [17]. Nonetheless, these approaches
still face limitations such as relatively low delivery efficiency and prolonged reprogramming
timelines [18].

Chemical reprogramming represents an attractive alternative, offering greater flexibility and
precise temporal-spatial regulation of gene expression compared with transgene-based strategies.
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Small molecules, including vitamin C, CHIR99021, and FSK can modulate signaling pathways and
epigenetic states to guide cell fate transitions with high controllability, thus enhancing clinical
translation potential [13, 19, 20]. Given the ease of combination and adjustment, small-molecule
cocktails hold particular promise for generating clinically relevant, lineage-specific cell types
tailored for therapeutic applications.

1.2. Alzheimer's disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by beta-amyloid (Aβ)
deposition, neurofibrillary tangles (NFTs), and neuronal loss [21]. Current therapies, including
acetylcholinesterase inhibitors, NMDA antagonists, and anti-Aβ antibodies, offer only symptomatic
relief without altering disease progression [22].

The development of iPSCs technology has provided new possibilities for AD modeling and
treatment. Over the past 15 years, iPSC-based models have evolved from simply recapitulating
pathological hallmarks to enabling detailed exploration of disease mechanisms and therapeutic
target identification. Early models generated from fibroblasts of early-onset familial AD patients
carrying Presenilin 1 (PS1) and Presenilin 2 (PS2) mutations successfully reproduced disease-
specific phenotypes and served as platforms for candidate drug validation [23]. Advances in 3D
culture improved fidelity: neural stem cell cultures replicate Aβ plaques and tau pathology [24], and
brain organoids exposed to human serum exhibit AD-like features [25]. Patient-derived organoids
display Aβ aggregation and tau hyperphosphorylation, which β- and γ-secretase inhibitors can
attenuate, supporting their value in preclinical studies [26].

iPSC models have revealed multiple AD-related pathways. Aberrant APP processing activates
GSK-3β and promotes tau hyperphosphorylation [27]; APP V717I mutation elevates tau and Aβ
species [28]; MAPT mutations accelerate neuronal maturation and excitability, driving tau
accumulation [29]; and APP/PS1 mutations increase the Aβ42/Aβ40 ratio and reduce synaptic
proteins, with homozygous APP variants producing severe phenotypes [30].

iPSC-derived neurons support high-throughput drug screening, enabling assays to identify
compounds reducing Aβ toxicity [31]. Large-scale screens using patient-derived neurons have
revealed synergistic drug combinations, including bromocriptine, sodium cromoglicate, and
topiramate, which enhance anti-Aβ activity [32].

In terms of transplantation therapy, transplantation of iPSC-derived cells into 5XFAD transgenic
AD mice has significantly improved cognitive performance, potentially via plaque reduction and
differentiation of grafted cells into oligodendrocytes [33]. Table 1 provides a summary of recent
advances in iPSC-derived models for Alzheimer’s disease, highlighting their roles in disease
modeling, mechanistic studies, and therapeutic development.

Overall, iPSC technology holds considerable promise for advancing AD research and therapy.
Future directions include optimizing model stability, improving the fidelity of disease recapitulation,
and integrating gene editing with high-throughput screening to accelerate the development of
effective interventions.
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Table 1. iPSC-based models for Alzheimer’s disease research

Disease
Type

Stem
Cell
Type

Resea
rch

Stage

Cell
Sour

ce
Key Findings

Refe
renc

e

Alzheim
er’s

disease
iPSCs In

vitro
Hum

an
Established an iPSC-based model recapitulating key AD pathological

mechanisms, applied for candidate drug screening. [8]

Alzheim
er’s

disease
iPSCs In

vitro
Hum

an

Reproduced Aβ aggregation and Tau hyperphosphorylation; confirmed that β-
and γ-secretase inhibitors significantly reduced these pathologies, demonstrating

potential for drug development.
[11]

Alzheim
er’s

disease
iPSCs In

vitro
Hum

an
MAPT gene mutations accelerate neuronal maturation and increase excitability,

thereby promoting abnormal Tau accumulation. [14]

Alzheim
er’s

disease
iPSCs In

vitro
Hum

an
APP and PS1 mutations increase the Aβ42/Aβ40 ratio and reduce synaptic
protein levels; homozygous APP mutations cause more severe pathology. [15]

Alzheim
er’s

disease
iPSCs In

vitro
Hum

an

Large-scale drug screening in patient-derived iPSC neurons identified a
combination of bromocriptine, sodium cromoglicate, and topiramate with

enhanced anti-Aβ effects.
[17]

Alzheim
er’s

disease
iPSCs In

vivo
Mous

e

Reprogrammed mouse fibroblasts into iPSCs and transplanted them into
5XFAD AD mouse brains, significantly improving cognitive deficits, likely via

Aβ plaque reduction and differentiation into oligodendrocytes.
[18]

2.3 Parkinson's disease

Parkinson’s disease (PD) is marked by dopaminergic neuron (DAn) loss in the substantia nigra and
α-synuclein (α-syn) aggregation into Lewy bodies [34]. It manifests with motor symptoms—tremor,
rigidity, bradykinesia, postural instability—and non-motor features such as constipation, sleep
disturbances, and depression [35]. Current therapies, including dopamine replacement (levodopa,
MAO-B inhibitors, dopamine agonists), deep brain stimulation, and rehabilitation, alleviate
symptoms but do not halt progression or effectively address non-motor deficits [36–39].

iPSC technology models PD pathologies, supporting mechanistic studies and drug discovery.
SNCA triplication-derived iPSCs reproduce α-syn accumulation, oxidative stress, and stressor
sensitivity [40,41]. Gene editing enables isogenic controls for variant-specific analyses [42]. iPSC-
derived DAn with LRRK2 p.G2019S mutations show elevated α-syn and stress-response gene
expression [43]. Midbrain-like organoids (hMBOs) from SNCA triplication iPSCs exhibit age-
dependent α-syn aggregation and progressive DAn loss [44].

iPSC models have revealed multiple pathogenic mechanisms of PD. For instance, The A53T
SNCA mutation impairs mitochondrial function, increases reactive oxygen species (ROS)
production, suppresses the MEF2C-PGC1α pathway, and triggers neuronal apoptosis [45].
Overexpression of α-syn can activate the IRE1α/XBP1-mediated unfolded protein response (UPR),
elevating the pro-apoptotic factor CHOP [46]. Both SNCA triplication and A53T mutations are
associated with α-syn oligomerization, cholesterol metabolism deficits, and endoplasmic reticulum
stress [47]. Other PD-associated mutations, such as those in LRRK2, PINK1/Parkin, GBA, and
VPS35-are linked to synaptic dysfunction, mitochondrial impairment, and defective protein
degradation [48-52].
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iPSC-derived DAn transplantation has shown promising therapeutic potential in preclinical
studies. In rodent models, the extent of neurite extension into the host striatum has been identified as
a critical determinant of graft efficacy, with REST gene expression proposed as a biomarker for
optimal transplantation timing [53]. Additionally, dopamine fiber density post-transplantation has
emerged as a predictive marker for functional recovery, informing the design of ongoing and
planned clinical trials [54]. Table 2 outlines key studies utilizing iPSC technology for Parkinson’s
disease.

Table 2. iPSC-based models for parkinson’s disease research

Disease
Type

Stem
Cell
Type

Research
Stage

Cell
Sour

ce
Key Findings

Refe
renc

e

Parkins
on’s

disease
iPSCs

In vitro
(cell

model)

Hum
an

iPSC-derived dopaminergic neurons (DAn) from SNCA triplication patients
reproduced α-synuclein accumulation, increased oxidative stress, and

hypersensitivity to stressors.
[26]

Parkins
on’s

disease
iPSCs

In vitro
(cell

model)

Hum
an

DAn derived from iPSCs carrying the LRRK2 p.G2019S mutation exhibited
elevated α-syn expression and upregulation of stress-response genes. [28]

Parkins
on’s

disease
iPSCs

In vitro
(cell

model)

Hum
an

Both SNCA triplication and A53T mutation in DAn led to α-syn
oligomerization, cholesterol metabolism defects, and endoplasmic reticulum

stress.
[32]

Parkins
on’s

disease
iPSCs

In vitro
(mechanis

tic)

Hum
an

Mutations in LRRK2, PINK1/Parkin, GBA, and VPS35 are closely
associated with synaptic dysfunction, mitochondrial impairment, and

abnormal protein degradation.

[33–
37]

Parkins
on’s

disease
iPSCs

In vivo
(transplan

tation)

Hum
an

The extent of neurite outgrowth into the host striatum was a key factor
influencing transplantation outcomes; REST gene expression could serve as

an indicator for optimal transplantation timing.
[38]

Parkins
on’s

disease
iPSCs

In vivo
(transplan

tation)

Hum
an

Dopaminergic fiber density was identified as an important predictor of
transplantation efficacy, facilitating the development of related clinical trial

plans.
[39]

2.4 Spinal cord injury

Spinal cord injury (SCI) is a debilitating central nervous system disorder caused severe sensory,
motor, and autonomic deficits, with high disability and socioeconomic burden [55]. Current
treatments-pharmacological therapy, decompression surgery, and rehabilitation—mainly alleviate
symptoms without restoring full function.

iPSC-based strategies show promise for SCI repair. iPSC-derived neural progenitors (NPCs),
neural stem cells (NSCs), and oligodendrocyte progenitors (OPCs) promote remyelination, axonal
regeneration, and synaptic reconstruction [56,57]. Preclinical studies report region-specific NPCs
enhance motor recovery in mice, while cannabinoid receptor activation improves OPC myelination
efficiency [56].

In rat models, transplanted iPSC-derived NPCs differentiate in vivo into neurons and astrocytes,
establishing functional synaptic networks [58]. Combined with rehabilitation, grafted NSCs boost
synaptic activity, secrete neurotrophic factors, and improve motor recovery [59]. Synergistic effects
have also been observed with combinatorial transplantation strategies for example, co-delivery of
brain-derived neurotrophic factor (BDNF) overexpressing mesenchymal stem cells and iPSC-



Proceedings	of	ICBioMed	2025	Symposium:	AI	for	Healthcare:	Advanced	Medical	Data	Analytics	and	Smart	Rehabilitation
DOI:	10.54254/2753-8818/2025.AU27125

97

derived motor neuron precursors (iMNPs) significantly promotes axonal regeneration and functional
recovery in chronic SCI models [60].

In terms of neural circuit reconstruction, iPSC-derived pyramidal neuron precursors (PNPs) can
form synaptic connections with host neurons post-transplantation while exerting anti-inflammatory
effects that improve the local immune milieu [61]. Furthermore, composite constructs, such as TrkC-
modified NSCs with aligned collagen scaffolds, further improve motor function and matrix
remodeling [62].

Table 3 summarizes iPSC-based SCI interventions and combinatorial strategies. Future directions
include integrating iPSC transplantation with biomaterials, gene editing, and exosome engineering
to accelerate clinical translation.

Table 3. iPSC-based strategies for spinal cord injury treatment

Disea
se

Type

Stem
Cell
Type

Researc
h Stage

Cell
Sour

ce
Key Findings

Ref
ere
nce

Spinal
cord

injury

iPSC
s

In vivo
(animal
model)

Hu
man

iPSC-derived neural progenitor cells (NPCs) with spinal cord region specificity
significantly promoted motor function recovery in moderate SCI models. iPSC-
derived OPCs showed enhanced myelination efficiency after CB1R and CB2R

activation.

[41
]

Spinal
cord

injury

iPSC
s

In vivo
(animal
model)

Hu
man

Transplantation of iPSC-derived NPCs promoted in vivo differentiation into neurons
and astrocytes and facilitated the formation of functional synaptic networks.

[43
]

Spinal
cord

injury

iPSC
s

In vivo
(animal
model)

Hu
man

When combined with rehabilitation training, transplanted NS/PCs enhanced
synaptic activity, secreted neurotrophic factors, improved cell survival and

differentiation, and promoted motor function recovery.

[44
]

Spinal
cord

injury

iPSC
s

In vivo
(animal
model)

Hu
man

Co-transplantation of brain-derived neurotrophic factor (BDNF)-overexpressing
engineered mesenchymal stem cells with iPSC-derived motor neuron progenitors

(iMNPs) demonstrated synergistic effects on axonal regeneration and motor function
improvement in chronic SCI models.

[45
]

Spinal
cord

injury

iPSC
s

In vivo
(animal
model)

Hu
man

iPSC-derived pyramidal neuron progenitors (PNPs) formed synaptic connections
with host neurons after transplantation and exhibited anti-inflammatory properties,

improving the local immune microenvironment.

[46
]

Spinal
cord

injury

iPSC
s

In vivo
(animal
model)

Hu
man

A composite tissue engineered by combining TrkC-modified NSCs with linearly
aligned collagen scaffolds effectively improved motor function, promoted synapse

formation, and facilitated extracellular matrix remodeling in SCI rats.

[47
]

3. Conclusion

At present, Conventional treatment modalities for neurological diseases-pharmacotherapy, surgery,
and rehabilitation are hindered by intrinsic limitations. Pharmacological approaches often suffer
from low delivery efficiency, poor target specificity, and systemic side effects; surgical interventions
are applicable to a narrow patient subset and carry procedural risks; rehabilitation primarily serves
as an adjunctive measure, with variable efficacy across individuals.

The advent of iPSC technology has created unprecedented opportunities for both research and
therapy in neurological disorders. iPSCs can replace lost or damaged neurons, modulate immune
responses, promote endogenous repair, and provide neurotrophic support to injured neural circuits
[63]. However, several challenges still impede clinical translation, including optimization of cell
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sourcing and differentiation protocols, refinement of delivery systems, and mitigation of safety
concerns such as tumorigenicity and immune rejection.

Currently, most findings are derived from preclinical animal models, and there remains a paucity
of validation from large-scale, multi-center clinical trials. Given the multifactorial pathogenesis of
neurological diseases, single-modality therapies are unlikely to achieve optimal outcomes.
Multimodal strategies-combining iPSC transplantation with gene editing, neuroprotective
pharmacotherapy, rehabilitation, advanced biomaterials, 3D bioprinting, or optogenetic modulation-
offer a promising path toward synergistic, multi-targeted interventions.

In the future, the integration of iPSC-based approaches with emerging technologies such as
single-cell omics, organoid modeling, and advanced neuroimaging will enable the development of
personalized and precision therapies. As iPSC technologies continue to mature, they are poised to
play a pivotal role in bridging basic research and clinical application, ultimately transforming the
therapeutic landscape for neurological diseases.
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