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Abstract. This paper deals with special classes of quartic polynomials and properties pertaining 

to their Galois groups and reducibility over certain fields. The existence of quartic polynomials 

irreducible over Q but reducible over every prime field is first proven, after which criteria are 

established for the Galois group of polynomials with this property. By constructing classes of 

V4-generic polynomials and comparing them with criteria put forth in previous studies for 

determining polynomials with this property, it can be shown that a polynomial of the biquadratic 

form x4 + ax2 + b has this property if and only if it can be written as 𝒙𝟒  −  𝟐(𝒖 +  𝒗)𝒙𝟐  +
 (𝒖 − 𝒗)𝟐 with u, v ∈ℚ  such that none of u, v, or uv can be expressed as ratio of two squares, 

and 2(u+v),(u−v)2 ∈ ℤ . The general form for biquadratic polynomials irreducible over ℚ  and 

reducible modulo every integer n is found to have a general form similar to this one. 

Keywords: quartic polynomials, Galois groups, math. 

1.  Introduction 

The relation between polynomials has been an interesting topic for mathematicians in the past few 

decades. 

Several previous studies focused on how to represent groups such as Sn and An as Galois groups of 

polynomials [1-3], and others tried to find out properties about these polynomials [4]. Among these 

studies, we found that the reducibility of quartic polynomials is especially appropriate for us to 

investigate. Both Rotman and Driver et. al included this topic in their researches [5-6]. This paper aims 

to review some important properties of quartic polynomials and open up room for further exploration. 

We expand on problems put forward in the textbooks of Rotman as well as Dummit and Foote about 

classifying the family of quartic polynomials that are reducible in all prime fields [5,7]. Additionally, 

we address the question of constructing a generic polynomial for a given Galois group - something 

which is of high relevance to the inverse Galois problem. 

2.  Polynomials reducible modulo every prime p 

The topic of polynomials irreducible over ℚ but reducible modulo every prime number p is a recurring 

concept in textbooks of Galois Theory: the works of Dummit and Foote, Milne[8], and Rotman have all 
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touched on and discussed its properties. For convenience, we shall call polynomials with this property 

hollow1in p. 

Example 2.1 f(x) = x4 + 1 

It can be shown, by forming equations from the coefficients of the potential factorizations of f(x), 

that there exists no factorization of  f(x) in ℚ. We can also use Eisenstein’s criterion after the substitution 

x → x + 1 to examine this result. 

Now consider f(x) over a finite field ℤ𝑝, where p is a prime. We wish to check if f(x) is reducible in 

(ℤ/𝑝ℤ)[x] for every prime p: 

   𝑥4 +  1  mod  p 

Proof 2.1 It can be easily seen that, for p = 2, 

  𝑥4 +  1 ≡  (𝑥 +  1)4 mod 2 

But for p >2, it is more difficult to find a factor for f(x). To further show this, we must rely on the 

Legendre symbol, which is defined for some integer α coprime to as 

                     {
(

𝛼

𝑝
) = 1  𝑖𝑓 𝛼 ≡ 𝑋2     𝑚𝑜𝑑   𝑝

(
𝛼

𝑝
) = −1  𝑖𝑓 𝛼 ≢ 𝑋2     𝑚𝑜𝑑   𝑝

             for X ∈ ℤP  

Lemma 2.2 Supplement 1 to the Law of Quadratic Reciprocity [9]  

(
−1

𝑃
) = {

1,      𝑖𝑓   𝑝 ≡ 1    𝑚𝑜𝑑 4
−1,    𝑖𝑓  𝑝 ≡ 3    𝑚𝑜𝑑 4

 

Proof 2.2 This is a simple consequence of Euler’s Criterion, which states that 

(
−1

𝑝
) = (−1)

𝑝−1

2  

The result directly follows from this. 

Lemma 2.3 Supplement 2 to the Law of Quadratic Reciprocity [9] 

(
2

𝑝
) = {

1,     𝑖𝑓  𝑝 ≡ 1  𝑜𝑟 − 1     𝑚𝑜𝑑  8
−1,     𝑖𝑓  𝑝 ≡ 3  𝑜𝑟 − 3     𝑚𝑜𝑑 8 

 

Proof 2.3 The proof for this is slightly lengthier: denote X to be 

𝑒𝑥𝑝 (
𝜋𝑖

4
) =

√2

2
+ 𝑖

√2

2
 

𝑋4 = −1 ⇒ 𝑋−1 = −𝑋3 =
√2

2
− 𝑖

√2

2
 

𝐿𝑒𝑡 𝐺 = 𝑋 + 𝑋−1 = 𝑋 − 𝑋−3 =
√2

2
+ 𝑖

√2

2
+

√2

2
− 𝑖

√2

2
= √2 

G can therefore be thought of as the integer, if it exists, such that 

   G2 ≡ 2 mod p 

Consider Gp= Xp+ X−p mod p.  Since X8 = (X−1)8 = 1, if p ≡ 1 or −1 mod 8, then 

𝑋𝑃 + 𝑋−𝑃 = 𝑋 + 𝑋−1 = 𝐺 

if p ≡ 3 or −3 mod 8, then 

 
1We have not taken this coinage from any previous work: we came up with it here for conciseness 
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𝑋𝑃 + 𝑋−𝑃 = 𝑋3 + 𝑋−3 = −𝑋−1 − 𝑋 = −𝐺 

This implies 

𝐺𝑝 ≡ −1
𝑝2−1

8 𝐺    𝑚𝑜𝑑  𝑝 

At the same time, 

𝐺𝑝 = 𝐺𝑝−1𝐺 = (𝐺2)
𝑃−1

2 𝐺 = 2
𝑃−1

2 𝐺 ≡ (
2

𝑃
) 𝐺    𝑚𝑜𝑑  𝑝 

Combining the two above equations, we can get 

−1
𝑝2−1

8 𝐺 ≡ (
2

𝑝
) 𝐺      𝑚𝑜𝑑   𝑝 

−1
𝑝2−1

8 = (
2

𝑝
) 

which is what we want. 

Remark 2.4 For Legendre symbols, the property(
𝑎

𝑝
) (

𝑏

𝑝
) = (

𝑎𝑏

𝑝
)  holds. 

This implies(
2

𝑝
) (

−1

𝑝
) = (

−2

𝑝
) , 

where(
−2

𝑝
) = 1 if either(

−1

𝑝
) = (

−2

𝑝
) = 1  𝑜𝑟 (

−1

𝑝
) = (

−2

𝑝
) = −1 

The first case holds if p ≡ 1 mod 4 and p ≡ 1 or −1 mod 8, so it is true when 

        p ≡ 1 mod 8 

The second case holds if p ≡ 3 mod 4 and p ≡ 3 or −3 mod 8, so it is true when 

        p ≡ 3 mod 8 

Going back to x4+1 mod p, we now see that we can consider three possible cases based on the possible 

modular values of p: 

(i) p ≡ 1 or −1 mod 8 ∃α :α2= 2, then 

 x4+1 ≡ x4+2x2+1−2x2 ≡ (x2 + 1) 2−α2 ≡ (x2−α+1)(x2+α+1) mod p 

(ii) p ≡ 3 mod 8 ∃α :α2 = −2, then 

 x4+1 ≡ x4−2x2+1+2x2 ≡ (x2 − 1)2−α2 ≡ (x2−α−1)(x2+α−1) mod p 

(iii) p ≡ 1 mod 4 ∃α :α2 = −1, then x4 + 1 ≡ x4 − (α2) ≡ (x2 −α)(x2 + α) mod p 

It should be obvious that every odd prime p will fall into one of the categories listed above. Therefore, 

we have shown that f(x) is reducible modulo every prime. 

Using the same approach, it follows that g(x) = x4 + γ4 for some γ ∈ ℤ are hollow, but can we classify 

any other such polynomials besides g(x)? Let us exclusively examine hollow polynomials of degree 4. 

Example 2.5 2 Determine whether f(x) = x4 − 10x2 + 1 is hollow. 

We notice that the coefficient of the x3 and x terms are 0, meaning we can f(x) as either 

(x −a)(x3 + ax2 + bx + ab), 

or 

(x2 −ax + b)(x2 + ax + b),a,b∈ℚ 

In the first case, we obtain 

 
2 This approach is borrowed from Rotman’s textbook [5], which shows the ’hollowness’ of this exact polynomial 

in Example 26, p.66 as does Dummit and Foote [7] 
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10 = a2 −b,  

a2b = −1, 

solving for which gives us b2 + 10b + 1 = 0, from which we can see that b is not rational. Likewise, in 

the second case we find that 

b2 = 1, 

a2 − 2b = 10, 

and a is not rational, meaning 𝑓(𝑥) is irreducible. 

For factorization modulo p, we first complete the square; 

𝑓(𝑥) = (𝑥2 − 5)2 − 24  

we now focus on the square root of 24, which is 2 √6. We write this as 2m, where m is the integer such 

that m2  ≅6 mod p: for p such that m is solvable, 𝑓(𝑥) can be factorized as (x2 − 5 + 2m)(x 2 − 5 − 2m). 

For p such that m has no solution in ℤp, we try the next approach and try to find an element 𝑗 + 𝑘𝑚 

in the field extension ℤp[m] such that 5+2m = (j+km)2. Lining up the coefficients gives us 

j2 + 6k2 = 5,  

jk=1. 

From this we note that k = j−1, and that the resultant equation 

j4 − 5j2 + 6 → (j2 −2)(j2 − 3), must have a solution, for if 

(
2

𝑝
) = (

3

𝑝
) = −1 

then (
6

𝑝
) = 1. We notice that, since (j + j−1m)2 = 5 + 2m, (j −j−1m)2 =5 − 2m, and we write (x2 − 5 + 2m)(x 

2 − 5 − 2m) as 

(x2 − (j −j−1m)2)(x 2 − (j + j−1m)2) 

→ ((x−j) + j−1m)((x + j) − j−1m)((x −j) − j−1m)((x + j) + j−1m) 

→ ((x−j) + j−1m)((x −j) − j−1m)((x + j) + j−1m)((x + j) − j−1m) 

→ ((x−j)2 − 6j−1)((x + j)2 − 6j−1) 

and we are done. 

Theorem 2.6 (Dedekind) 3 Let f(x) be a polynomial over ℤ [x] with Galois group G and a 

factorization modulo some prime p 

𝑓(𝑥) = ∏ ℎ𝑖(𝑥)      𝑚𝑜𝑑 𝑝

𝑗

𝑖=1

 

where each hi(x) is a distinct, irreducible, monic factor such that 

∑ 𝑑𝑒𝑔 (ℎ𝑖

𝑗

𝑖=1

) = 𝑑𝑒𝑔 (𝑓) 

Then G must contain a cycle of type: 

(deg(h1),deg(h2),...,deg(hj)) 

Remark 2.7 An irreducible quartic polynomial is hollow if and only if it has the Galois groups V4 or 

A4 

 
3 See [1] Conrad Section 3 for a complete proof of this theorem. 
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Proof 2.4 It follows from Dedekind’s Theorem (2.6) that a polynomial of degree n has an n-cycle in 

its Galois group if and only if it is irreducible for some prime p. This means we can say that an irreducible 

polynomial is reducible modulo every prime p if and only if it has no n-cycle in its Galois group. 

However, a polynomial with a Galois group that is not transitive 4in Sn must be reducible([6], Theorem 

2.9, pg.3). In the case of quartic polynomials, the only transitive subgroups of S4 that satisfy this 

condition are V4 and A4. 

3.  Biquadratic polynomials and the V4 group 

3.1.  Irreducible polynomials with Galois group V4 

In the following section we will consider hollow polynomials with Galois group V4. 

Definition 3.1 Define the minimal polynomial a(𝑥) of α ∈ E/F for some Galois extension E/F as the 

unique, irreducible monic polynomial with Galois group 

Gal(E/F). This is given by 

𝛼(𝓍) = ∏ (𝑥 − 𝜎(𝛼))

𝜎∈𝐺𝑎𝑙(𝐸/𝐹)

 

when the stabilizer group of the Galois action Stab(α) = 1. Alternately, we define the minimal 

polynomial of α as 

𝛼(𝓍) = ∏ (𝑥 − 𝜎(𝛼))

𝜎∈𝐺/𝑆

 

where G = Gal(E/F) and S = Stab(α) 

Example 3.2 Find the minimal polynomial of the element α = 5 √6 in the extension E/F = ℚ ( √2, 

 √3). We have ℚ( √2,√3) = ℚ (√2) ×ℚ (√3)), so Gal(E/F) ≅V4. 

Examining the Galois action δ(α), δ∈ Gal(E/F), we see that |Stab(α) = 2| and Orb(α) = {α,−α}. The 

minimal polynomial is then given by  

     a(𝓍) = (𝓍 − 5  √6)( 𝓍 + 5 √6) = 𝓍 2 − 150. 

As we can see, although α is an element of E/F where Gal(E/F) ≅ V4, its minimal polynomial is not 

quartic and therefore does not have Galois group V4. We gather that the degree of the minimal extension 

is determined by the cardinality of its stabilizer group and that an element α in E/F has Galois group 

equal to Gal(E/F)if and only if it has a trivial stabilizer group under the action of the group Gal(E/F). In 

other words, it holds if α is not fixed by any non-trivial automorphism of E/F. 

We now consider when Gal(E/F) ≅ V4: 

Lemma 3.3 The Galois extension E/F = ℚ(√𝑗, √𝑘) is equivalent to ℚ (√𝑗+√𝑘) 

Proof 3.1 Define j and k as distinct, square-free5 j,k̸  ∉ ℚ) Let G = Gal(E/F); it can be shown that  

G≅V4. Let K denote the intermediate field F ⊂ K ⊂E generated by√𝑗+√𝑘. Then the Galois group of 

the extension E/K is, by definition, the group of automorphisms of E/K fixing K. Since EFK, 

Gal(E/K)(E/F). We see that since the three non-trivial elements of Gal(E/F) respectively fix√𝑗, √𝑘, and 

√𝑗𝑘, no element fixes √𝑗+√𝑘. Therefore |Gal(E/K)| = |Aut(E/K)| = 1. By the Fundamental Theorem of 

Galois Theory, we have 

𝐸𝐺𝑎𝑙(𝐸/𝐹) = 𝐾 → 𝐸 = 𝐾 

It follows that√𝑗+√𝑘 is a primitive element of E/F, so, as desired, ℚ (√𝑗, √𝑘) ≅  ℚ (√𝑗+√𝑘). 

 
4 A subgroup E of Sn, the permutation group of the set N, is transitive if, ∃σ ∈ E such that σ(n1) = n2, ∀n1,n2 ∈ N 

5 Define an integer to be square-free if it is not divisible by any square other than 1 
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Corollary 3.4 We can express an element in the extension generated by√𝑗+√𝑘 as 𝑎√𝑗+𝑏√𝑘, where 

j and k are distinct square free integers, not necessarily 

positive, and a,b∈ℚ. 

Remark 3.5 We further apply the argument presented in Lemma 3.3 to elements in E/F of the form 

l+ √𝑗+√𝑘 + √𝑗𝑘, and show that this too is a primitive element of E/F. Note that the dimension of the 

extension is 4, also the number of basis vectors in this element. It follows that every element in the 

extension E/F where Gal(E/F) ≅ V4 can be written in the form a +  𝑏√𝑗+𝑐√𝑘 + 𝑑√𝑗𝑘, where a,b,c,d∈

ℚ. The same condition from Corollary 3.4 applies for j,k, and jk. Noting that we do not necessarily 

need jkto be square free, as that would restrict j and k to be co-prime. 

We are now able to use this result to find the V4-generic class of irreducible polynomials. 

Theorem 3.6 If a polynomial is irreducible over Q and has Galois group V4, then it can be written in 

the form 

∏ (𝑥 − 𝜎(𝑎 + 𝑏√𝑗 + 𝑐√𝑘 + 𝑑√𝑗𝑘))

𝜎∈𝐺/𝑆

 

or, written out, 

(𝑥 − (𝑎 + 𝑏√𝑗 + 𝑐√𝑘 + 𝑑√𝑗𝑘)) (𝑥 − (𝑎 + 𝑏√𝑗 − 𝑐√𝑘 − 𝑑√𝑗𝑘)) 

(𝑥 − (𝑎 − 𝑏√𝑗 + 𝑐√𝑘 − 𝑑√𝑗𝑘)) (𝑥 − (𝑎 − 𝑏√𝑗 − 𝑐√𝑘 + 𝑑√𝑗𝑘)) 

We will not provide the fully expanded form due to its being too intricate6, but it can be shown that 

the coefficient of the 𝓍3 term is −4a. By setting a to 0, we instead consider all reduced quartic 

polynomials, and have removed one parameter from the expression, giving 

(𝑥 − (𝑏√𝑗 + 𝑐√𝑘 + 𝑑√𝑗𝑘)) (𝑥 − (𝑏√𝑗 − 𝑐√𝑘 − 𝑑√𝑗𝑘)) 

(𝑥 − (−𝑏√𝑗 + 𝑐√𝑘 − 𝑑√𝑗𝑘)) (𝑥 − (−𝑏√𝑗 − 𝑐√𝑘 + 𝑑√𝑗𝑘)) 

This, too, cannot be easily manipulated. In the next theorem, we shall only consider two parameters. 

Definition 3.7 Define a quartic polynomial to be ”biquadratic” if it can be written as   

𝓍4+ a 𝓍2 + b 

for some a,b∈ℚ. 

Theorem 3.8 A biquadratic polynomial p(x) is irreducible in Q and has Galois group V4 if and if only 

if it can be written in the form 

      𝑥4 − 2(𝑢 + 𝑣)𝑥2 + (𝑢 − 𝑣)2            (3.1) 

where u and v are distinct rationals such that none of u, v or uvcan be written as a ratio of two squares. 

Proof 3.2 Let us set one of b,c, or d to 0. There are now no simpler polynomials that we can construct, 

as removing any more parameters will result in a non-trivial stabilizer group. We now have either  

𝛼 = √𝑏2𝑗 + √𝑐2𝑘, 

𝛼 = √𝑐2𝑘 + √𝑑2𝑗𝑘, 

Or 

 
6 The reader may check these via WolframAlpha 
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𝛼 = √𝑏2𝑗 + √𝑑2𝑗𝑘 

Without loss of generality, we can write any three of these as 

𝛼 = √𝑢 + √𝑣 

with distinct u,v ∈ ℚ.  We must further restrict u and v in a way that is equivalent to the conditions 

given in 3.4 and 3.5. It must hold that neither √𝑢 or √𝑣 are in ℚ. We must further restrict u and v such 

that √𝑢 + √𝑣 cannot be written as a single radical, in which case Stab(α) = 2, so we end up with the 

conditions u,v, and uv cannot be written as ratio of two square integers. From this, the computation of 

the orbit group of Gal(E/F) on α should follow easily, and we find the minimal polynomial of α to be 

𝒶(𝑥) = (𝑥 − √𝑢 − √𝑣)(𝑥 + √𝑢 + √𝑣)(𝑥 − √𝑢 + √𝑣)(𝑥 + √𝑢 − √𝑣) 

Which we write as 

𝒶(𝑥) = (𝓍2 − (√𝑢 + √𝑣)
2

) (𝑥2 − (√𝑢 − √𝑣)
2

)， 

And finally as 

𝑎(𝑥) = 𝑥4 − 2(𝑢 + 𝑣)𝑥2 + (𝑢 − 𝑣)2， 

Corollary 3.9 Since there are no other ways to construct a minimal polynomial a(x) with the Galois 

group V4 such that a(x) is of the form 

𝑥4 + 𝒶𝑥2 + 𝑏， 

we conclude that all irreducible polynomials of the form𝓍4 + 𝒶𝓍2 + 𝑏 must also be of the form of 

equation (3.1) 

Corollary 3.10 All hollow polynomials of the form 𝓍4 + 𝒶𝓍2 + 𝑏 can be written as equation (3.1) 

3.2.  Biquadratic Polynomials Modulo p 

We have found an exclusive family of irreducible biquadratic polynomials which contains all hollow 

polynomials for V4. We now attempt to find an exclusive family of hollow polynomials for V4; we do 

this by first generalizing the argument to all biquadratic polynomials, and considering the conditions 

under which they are reducible modulo p. 

Theorem 3.11 A biquadratic polynomial 

𝑓(𝑥) = 𝑥4 + 𝛼𝑥2 + 𝛽  

is irreducible in ℚ but reducible mod p for every prime p if and only if 

α2 − 4β≠ □, β = □, 2√𝛽 −α≠ □, −2√𝛽 −α≠ □ 

where □ indicates a perfect square number. 7 

Remark 3.12 Let us take the minimal biquadratic polynomial of V4, 

𝑎(𝓍) = 𝑥4 − 2(𝑢 + 𝑣)𝑥2 + (𝑢 − 𝑣)2， 

with the same constraints on u and v and with the added condition that 2(u + v),(u −v) ∈ ℤ and examine 

it using the criteria above: 

(−2(u + v))2 − 4(u −v)2 = 16uv, 

which by our hypothesis is not a square. 

(u −v)2 = □ always holds, of course, and 

 
7 For a full proof, see [6] Driver et al., Theorem 5 as well as [10]Carlitz 
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2√(𝑢 − 𝑣)2 − (−2(𝑢 + 𝑣)) = 4𝑢 

−2√(𝑢 − 𝑣)2 − (−2(𝑢 + 𝑣)) = −4𝑣 

both of which are by hypothesis not squares. 

Since we have shown that all biquadratic hollow polynomials must be of the form 

𝑎(𝓍) = 𝑥4 − 2(𝑢 + 𝑣)𝑥2 + (𝑢 − 𝑣)2， 

then it follows that polynomials that all biquadratic polynomials of the form 

𝑎(𝓍) = 𝑥4 − 2(𝑢 + 𝑣)𝑥2 + (𝑢 − 𝑣)2， 

2(u + v),(u −v) ∈ℤ 

must be hollow. 

Example 3.13 Consider x4 +1, which we have previously shown to be hollow. By lining up the 

coefficients, we have 

u + v = 0 

|u −v| = 1, 

and we conclude that x4 + 1 is the minimal polynomial of 
√2

2
+

√2

2
𝑖 

3.3.  Biquadratic Polynomials Modulo n 

Up until now, we have dealt with polynomials that are hollow in p, but it turns out that there exist 

polynomials that are hollow in every integer n greater than 1. 

Example 3.14 The polynomial 𝑓(𝑥) = 𝑥4 − 72𝑥2 + 4 is irreducible over ℚ but reducible modulo 

every integer n >1. To show that 𝑓(𝑥) is irreducible over ℚ, we consider 

f(x + 1) = (x4 + 4x3 + 6x2 + 4x + 1) − 72(x2 + 2x + 1) + 1 

 x4 + 4x3 − 66x2 − 140x − 71, 

which is irreducible by Eisenstein’s criterion [10]. Additionally, we can see that f(x) is hollow in p, by 

Theorem 3.11. We will use the following theorem to complete our proof for this claim. 

Theorem 3.15 A polynomial of the form 

f(x) = x4 − 2(s1 + s2)x
2 + (s1 −s2)

2 

is irreducible over Z but reducible modulo n for every integer n greater than 1 if s1 and s2 are distinct odd 

primes that satisfy 

𝑠1 ≡ 1(𝑚𝑜𝑑 8)， (
𝑠2

𝑠1
) = 1 

Proof 3.3 In order to prove the hollowness for n, we need to prove that f(x) is reducible modulo pk 

for each arbitrary positive integer k. We first define t = s1 −s2. Then we can easily find that  

α2 − 4t2 = 16s1s2≠ □, −α + 2t = 4s1≠ □, −α − 2t = 4s2≠□ 

Because s1 ≡ 1 (mod 8), −α+2t modulo 2k can only be a square. As(
𝑠2

𝑠1
) = 1 

−α − 2t is a square modulo . By the law of quadratic reciprocity 

(
𝑠1

𝑠2
) (

𝑠2

𝑠1
) = (−1)

𝑠1−1

2
 
𝑠2−1

2  
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we can get (
𝑠2

𝑠1
) = 1 and −α − 2t modulo  is a square. If (

𝑠𝛼

𝑝
) = 1 (where a = 1 or 2), then −α±2t is a 

square modulo pk. While if (
𝑠𝛼

𝑝
) = −1, then(

𝑠1𝑠2

𝑝
) = 1  and α2 − 4t2 modulo pk is a square. Therefore, 

f(x) is hollow for pk. Since every integer greater than 1 can be factorized into a form of  and

’s are co-prime, we can use Chinese Remainder Theorem to get lemma 3.16 [11]. 

Lemma 3.16 If f(x) is reducible modulo all pk for all prime p, then it’s reducible modulo n for all n. 

Therefore, we can easily end the proof. 

Remark 3.17 We notice the similarity between the respective expressions for biquadratic 

polynomials hollow in p and in n. The reader can check that the smallest pair of primes satisfying 

Theorem 3.15 are 2 and 17, the corresponding polynomial of which is x4 − 38x2 + 225. The next smallest 

pair of primes of primes are 13 and 17, which gives x4 −60x2 +16, the third smallest, 17 and 19, gives us 

the polynomial considered in Example 3.14. 
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