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Periapical inflammation and pulp diseases are highly prevalent and potentially
destructive oral conditions whose early detection remains challenging with conventional
modalities such as periapical radiography and CBCT. Recent advances in artificial
intelligence (Al), primarily deep convolutional neural networks (CNNs), have enabled
image-driven diagnosis and quantitative assessment of periapical and pulpal pathology.
Models trained on expert-annotated two-dimensional periapical and panoramic images and
3D CBCT images demonstrate improved sensitivity for subtle bone-density and
morphological changes, enabling automated segmentation, volumetric quantification of
radiolucent lesions, and delineation of pulp-cavity morphology, occult cracks and early
inflammatory signs. Typical 3D pipelines adopt a coarse-to-fine strategy, combining global
localization with local 3D-CNN refinement to produce voxel-level outputs suitable for
clinical decision support. Progress is nevertheless constrained by the high cost of expert
annotation, heterogeneous multi-center data, and a training plateau that yields diminishing
returns from simply enlarging datasets. Methodological remedies include semi- and self-
supervised pretraining, active learning, synthetic-data augmentation and federated multi-
center training, together with uncertainty quantification and explainable outputs to facilitate
clinical adoption. This review aims to systematically evaluate recent advances,
methodological challenges and translational pathways for Al-enabled imaging diagnosis of
periapical inflammation and pulp disease.

Al diagnostics, dental pulp, periapical periodontitis

Apical periodontitis and pulp disease are among the common and most devastating oral diseases.
Data from a meta-analysis showed that half of adults worldwide have at least one tooth with apical
periodontitis. Over time, if left untreated, it can lead to persistent pain, alveolar bone resorption, and
even tooth loss, seriously affecting chewing function and quality of life. However, traditional
diagnostic methods such as apical X-rays, probing, electrical activity testing, and cold and heat
stimulation tests are often insensitive in the early stages of lesions [1]. Even with cone beam
computed tomography (CBCT), the volume threshold, observer experience, and image quality of the
lesion still limit accurate judgment. How to detect small lesions, quantify lesion boundaries and
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predict lesion progression early in the course of the disease has become a bottleneck that needs to be
broken through in clinical practice.

Deep learning, especially convolutional neural networks (CNNs), presents revolutionary
opportunities for quantitative analysis of medical images. Artificial intelligence (AI) has powerful
image interpretation capabilities and can analyze both two-dimensional (2D) and three-dimensional
(3D) imaging in the dental field. Additionally, Al tools can quickly generate 3D models of dental
and maxillofacial structures. Al can also be used in the design of digital guides to help clinicians
improve diagnosis and optimize treatment plans. Significantly improved precision and time
efficiency in dental practice [2]. Compared with traditional manual feature extraction, CNN can
automatically learn texture and morphological features in large-scale training sets, and accurately
capture minute bone changes in 2D radiographs and 3D CBCT.

Al has significant advantages in identifying periapical lesions, especially for the analysis of
panoramic radiographs. By training Al, subtle changes in bone density and morphology, which are
important markers of apical lesions, can be identified, enabling early detection and assisting in the
formulation of precise treatment plans. In addition, the Al system can automatically label the
morphology of the medullary cavity, identify cryptofiscular and early inflammatory signs, and
output quantitative indicators such as lesion volume and the risk of bone plate perforation to provide
decision-making support for individualized treatment. This article aims to explore the application of
Al in the diagnosis of apical periodontitis and endodontic diseases, focusing on the role of Al in
image analysis, automated diagnosis, and clinical decision support [3]. By evaluating the potential
of Al technology in improving diagnostic accuracy, optimizing treatment plans, and improving
patient treatment outcomes, the application prospects and development trends of Al in the field of
stomatology are revealed.

CNN is a deep learning architecture designed for visual data, detecting and learning hierarchical
features in images through multi-layer structures. Clinical research usually trains CNNs on 2D and
3D dental structural images such as periodontal disease, oral cancer, caries, and endodontic disease
manually annotated by experts. Through the combination of expert supervision and curriculum-
based training, experts can continuously control the data input by AI, thereby improving the
reliability, efficiency, and accuracy of Al. Gradually increase the complexity of Al tasks during
training, helping Al models gain a deeper understanding of images by imitating human learning
methods. Experts also need to continuously monitor the output data so that Al can iteratively
improve from errors, ensure that the Al model is continuously improved, and ultimately achieve
more accurate labeling of lesions and reliable clinical diagnosis and treatment results [4].

Image preprocessing determines the training stability and inference reliability of image-driven
algorithms, which is the key link for its successful application. Raw oral images often contain
interfering information such as logo text, dental instrument artifacts, or uneven exposure, and other
information must be removed from the image to prevent misjudgment of lesion identification caused
by such confounding features. During the pre-processing phase, image contrast is often adjusted,
such as enhancing differentiation and border clarity between different structures or healthy and
diseased tissue. Texture enhancement or histogram equalization is also performed if necessary to
highlight the boundary between the lesion and the surrounding healthy tissue [5]. Al deep learning
technology has excellent performance in image feature recognition, and the deep learning network
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uses the multi-layer structure of artificial neural networks to independently generate classification
results by identifying edge features when analyzing data. Through these preprocessing, the deep
network can focus more on the image features associated with the lesion, thereby improving the
effectiveness of downstream recognition and segmentation.

In terms of training strategy, Al models usually employ supervised learning, supplemented by
transfer learning, self-supervised or semi-supervised pre-training to reduce annotation pressure.
Training Al is a step-by-step process. By repeatedly feeding image data and its corresponding labels
into the neural network, it is continuously superimposed to improve the recognition accuracy. This
field utilizes multi-layer (deep) neural networks to learn hierarchical features in data. The CNN
algorithm based on deep learning performed well in the detection of caries on apical radiographs,
and was also effective in identifying and classifying impacted supernumerary teeth in patients with
fully erupted maxillary permanent incisors on panoramic radiographs [6]. The deep-optimized full-
depth mask R-CNN model performed well in the task of automatic tooth segmentation in panoramic
images, and the model was also used for the detection of apical lesions on panoramic X-rays.

Al has shown significant advantages in lesion identification. It is excellent in detecting lesions in
periapical (PA) radiographs and panoramic radiographs. This technology also has high accuracy in
radiographic image-assisted prediction of caries treatment options. In the analysis of apical X-rays,
artificial intelligence can effectively identify impacted teeth in the maxillary incisor area and
achieve accurate classification. In addition, combined with panoramic tooth sheet data, artificial
intelligence can automate the processing of tooth segmentation. CNN has been used for dental arch
classification, and multilayer CNN technology has also significantly improved the imaging
diagnosis effect of adjacent caries. Machine learning algorithm tools can also effectively detect and
classify dental restorations in panoramic images. Artificial neural networks (ANNSs) enable accurate
working length determination on radiographs [7]. However, it should be noted that most of the
results come from retrospective or single-center validation, requiring external validation and blind
testing in multicenter, independent cohorts across devices to confirm the clinical applicability of the
model.

Detection and quantification of periapical lesions on 3D CBCT images usually adopts a coarse-
thinity combination strategy of first coarse localization and then local refinement. First, the initial
shallow network is trained using CBCT images, which coarsely locates each landmark point with
global anatomical information. Subsequently, around the coarse positioning area, the image blocks
are taken from the medium and high-resolution images. Key features (such as density changes in
caries, morphology of bone destruction, etc.) are automatically extracted through multi-layer
convolutional layers [8]. The 3D convolutional network is used to analyze the fine structure in three-
dimensional space, accurately locate the location of the lesion (such as root inflammation, impacted
teeth, etc.), and classify the type of lesion (such as caries degree, cyst, etc.) according to the
difference in characteristics. It also generates quantitative analysis results to assist doctors in
improving diagnostic efficiency and accuracy, especially in the detection of early lesions and
complex anatomical areas, which is better than traditional manual radiography.

Although the 3D method has obvious advantages in the characterization of anatomical details and
early lesion identification, several key issues restrict its clinical application. The average margin of
error for 3D landmark detection is approximately 1.0 mm to 5.8 mm, and the success rate of
automatic localization is low for certain complex or highly variable anatomical locations, such as
thin bone plates or root bifurcation areas in the vestibular region. In surgical scenarios requiring
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millimeter-level decision support, even a 1lmm error can change the treatment strategy, so the
accuracy of the algorithm is extremely high. Although AI has achieved a high level of accuracy, its
performance has not yet reached the expert level in the field of 3D landmark inspection. Existing
studies have also used limited samples for algorithm training and testing in this area.

Although 3D imaging technology can reduce the geometric distortion caused by planar projection
to a certain extent, the precise segmentation method of CBCT has not yet formed a unified standard
in semi-automatic workflow. Even a 2 mm error can have a significant impact when dealing with
smaller patients or specific anatomical landmarks. Therefore, the highest precision must be pursued
in these cases to ensure the best treatment results. Among the various landmarks annotated by 3D
images, vestibular angle landmarks are always one of the most difficult areas to automatically
locate, and their detection success rate is also the lowest. This is mainly because the landmark is a
construction point on a two-dimensional head map, formed by an imperfect superposition of male
bilateral pubic structures. Points located in the buccal thin bone area or at sharp changes in curvature
are heavily affected by bone thickness, artifacts, local noise, and voxel resolution, resulting in a low
success rate for automatic detection. In addition, three-dimensional errors can arise from differences
in volume segmentation or bending structures and vertical positions. Therefore, these constraints
must be fully considered when training the model.

Experimental data show that the model performance improves steadily with the increase of
training cycle. However, when a certain tipping point is reached, about 50% of the images cannot be
significantly improved by existing image sources and classification methods, indicating that data
saturation does exist, and that even better results can be achieved by simply increasing the number
of exponentially increasing images. For tasks such as apical periodontitis, which require voxel-by-
voxel segmentation to quantify the volume, boundaries, and bone destruction of the translucent
zone, further improving accuracy relies more on sample diversity, high-quality 3D annotation
(voxel-wise annotation), and the introduction of multicentric heterogeneous data rather than just
amplifying the amount of data. At the same time, this technique must be operated by a
professionally trained and qualified dentist under the guidance of a senior expert. To break through
this bottleneck, it is recommended to improve data diversity (cross-device, multicenter), use semi-
supervised or self-supervised pre-training, active learning to prioritize labeling high-information
samples, and use synthetic data or weakly supervised methods to complete rare lesion samples, so as
to maximize the clinical value of apical periodontitis detection and quantification models at a
controllable annotation cost.

Recent studies have shown that ANN can not only assist radiographic images in locating the apical
leading edge and working length like a second opinion, but also significantly improve the accuracy
and consistency of working length in radiological detection. In a wider range of endodontic disease
scenarios, deep learning-based models can automatically extract multi-scale morphological and
grayscale features from 2D apical profiles, panoramas, and 3D CBCT to identify pulpitis, pulp
necrosis, and related periapical complications. Typical applications include the dichotomy of
reversible versus irreversible pulpitis, voxel-level segmentation of apical translucent areas, and
automated annotation of complex anatomy of root canals (e.g., canal curvature, branching). By
fusing imaging features with clinical parameters (such as pain scores and electroactivity test results),
machine learning models can also improve the ability to discriminate between disease stage and
prognostic risk, thereby providing quantitative basis for individualized treatment decisions.
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Achieving these capabilities still faces several technical and practical challenges. Obtaining
diverse high-quality training datasets is difficult, mainly due to the inherent limitations of imaging
techniques, such as overlapping anatomy in 2D imaging that masks subtle changes in the medullary
cavity or apex, while CBCT is susceptible to high-density restoration artifacts and patient movement
[9]. Secondly, the supervised learning process is highly dependent on the professional ability of
operators. The professional capabilities of operators behind Al-supervised learning and the limited
universality of Al models have hindered the development of artificial intelligence in the field of
dental diagnosis and treatment [10]. To overcome these bottlenecks, future research should focus on
building cross-device and multi-center labeling protocols and benchmark datasets, using semi-
supervised or self-supervised pre-training and domain adaptation methods to improve model
robustness to heterogeneous data, and integrating image interpretability and uncertainty estimation
into clinical workflows to enhance auditability and improve clinicians' trust in Al systems.

Al shows clear potential to enhance image-based diagnosis and management of periapical
inflammation and pulp disease. CNNs applied to two dimensional radiographs and three
dimensional CBCT enable automated lesion detection, voxel level segmentation and volumetric
quantification, which can improve early detection, reduce inter reader variability and provide
objective metrics for treatment planning and follow up. Routine clinical adoption remains
constrained by several factors. High costs of expert annotation, especially voxel wise 3D labels,
limit dataset scale. Heterogeneity across imaging devices and centers undermines model
generalizability. Residual limits in 3D localization accuracy can fall short of the millimetric
precision required for some surgical decisions. Many published models have only retrospective or
single center validation, which reduces confidence in real world performance. To accelerate
translation, priority should be given to assembling multi center, standardized annotation corpora and
external benchmarks, and to employing semi supervised, self-supervised and active learning
strategies that reduce annotation burden. Federated and other privacy preserving multi-institutional
training frameworks can improve robustness. Integration of uncertainty quantification and
explainable outputs, combined with human in the loop workflows and prospective multicenter
validation, will be essential to build clinician trust and support regulatory readiness. With these
developments, Al could become a safe and reliable adjunct in periapical and pulp disease care.
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