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Abstract. A n-dimensional topological manifold is defined as an n-dimensional local Euclidean 

space M that is also a second countable space and a Hausdorff space. If a topological space has 

a countable base, it is referred to as a second countable space. At the same time, continuous 

function and metric space can help people to understand topological space better. This article 

will express some basic ideas about continuous functions, metric space, topological space and 

its properties, and topological manifolds. Moreover, the paper shows some basic ideas of how 

topological manifolds, topological space and function could be recognized and proved. Through 

analysis, this paper demonstrates the connection between them, such as using properties of 

continuous function to prove the definition and properties of topological manifolds and spaces. 
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1.  Introduction 

Topology as a branch of mathematics, can usually be used to solve questions involving set and geometry, 

as well as to perform further analysis on them. Topology can also be an important field for some other 

subjects or fields, such as physics. In this article, we will go through some rudimental but crucial 

theorems and definition. Also, we are going to prove some of the theorem and do some simple 

calculation, such as proving the properties of manifolds. After reading this paper and some other 

references that appear in this paper on those topics we just mentioned in the abstract, it will be quite 

easy for people to get an understanding of some basic ideas in topology and be able to understand most 

of the basic points that other references or books may have mentioned. 

2.  Continuous function 

2.1.  Continuous function 

In Euclidean metric, for a function, given f: R → R, x ∈ R, f is called as a continuous function if for all 

ε > 0, there exist a δ > 0, such that if | y − x | < δ,  

then | f(y) − f(x) | < ε. 

Also, if U ⊆ R is open, f −1(U) is open in R. 

If f and g are continuous, then g(f(x)) is also continuous. 

If a function f  is surjective, then there exists f: x → Y,  where f −1: Y → X , such that: 

𝑓(𝑓−1(𝑈)) = 𝑓−1(𝑓(𝑈)) = 𝑓0(𝑈) [1]. 

Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics (CONF-CIAP 2023)
DOI: 10.54254/2753-8818/5/20230301

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

501



2.2.  Function in topological space 

In topological space, giving a function f: x → Y. There is an input x ∈ X and obtaining an output of 

f(x) ∈ Y. 

A function f: x → Y is called continuous if for all U open set in Y, we have that f −1(U) is open in 

X. We have f −1(U) as: 

𝑓−1(𝑈) = 𝑝𝑟𝑒𝑖𝑚𝑎𝑔𝑒 𝑜𝑓 𝑈 = {𝑥 ∈ X | 𝑓(𝑥) ∈ U} 

Let X, Y be topological spaces, giving that there is a function f: x → Y. Then this function is called 

homomorphism if f is continuous, f is invertible and its inverse f −1 is also continuous. 

3.  Metric space 

A metric space is a set X such that there exists a distance d(x, y) that meets these four criteria for every 

x, y ∈ X. 
1) d(x, y) ≥ 0 

2) d(x, y) = 0 if and only if when x=y 

3) d(x, y) = d(y, x) 

4) d(x, y) + d(y, z) ≥ d(x, z), where z is the third point. This property can be showed by using 

Pythagoras theorem. 

3.1.  Open 

For a x ∈ X, when there is a ball at it, having a radius r > 0, then we have the set that 𝐵(𝑥, 𝑟) =
{𝑦 ∈ X | 𝑑(𝑥, 𝑦) < 𝑟}. 

we can say that x ∈ B(x, r). This will be an important definition for us to define the term “open”. 

There is a subset U of X if it is a metric space, given U ⊆  X. Under this situation, if for all x ∈ U, 

there exist a r>0, such that B(x, r) ⊆ U, then X is known as open, the examples are showed by figure 1. 

 

Figure 1. The example of balls that is open and closed in metric space. 

Fundamental properties, if X is a metric space, then it satisfies: 

1) X is open 

2) ∅ is open 

3) Any union of open subsets of X is also open. 

4) Any finite set of open subsets of X has an intersection that is also open. 
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4.  Topological space 

Except from what we have mentioned in the abstract, topological space can also be considered as a 

generalization of metric space. 

4.1.  Definition of topological space 

The following four characteristics define a set X with a collection A of subsets of x as a topological 

space. 

1) ∅ ∈ A 

2) X ∈ A 

3) Ui ∈ A, for every i ∈ I, then the union ⋃ Uii∈I ∈ A 

4) Ui, … , Un ∈ A, then ⋂ Ui
n
i=1 ∈ A 

In this case, any element of A is called an open subset of X. Automatically, any metric space will 

become a topological space due to its properties. 

4.2.  Example of some topological spaces 

For X = R 

1) Discrete topology: for A = {Y ⊆ X}, for all the subsets of X are exactly the same topology, which 

was define by the metric d(x, y) = {1 if x≠y
0 if x=y

 

2) Trivial topology: for A = {∅, R}, trivial topology is a topology under an extreme situation other 

than the discrete topology. If X is any non-empty collection, then the topology made up by X and an 

empty set is called trivial topology. [2] 

3) Zariski topology: Zariski topology is usually defined by using closed subset in the space. The 

closed set of Zariski topology in an affine space A is a set of common zeros in a set of polynomials [3]. 

The Zariski topology for an algebraic variety can be guided from the Zariski topology in that space A. 

For an affine scheme Spec A, the Zariski closed set can be as: V(I) = {p ∈ Spec A | p ∈ I} .  

Where I is ideal from Spec A [4]. 

Affine space is the collection of points and vectors, which have the definition: 

1) Setting A as a point set, there are two ordered points P and Q correspond to a vector in n-

dimensional vector space. 

2) Set that P, Q and R are any three points in A, P and Q correspond to vector a, Q and R correspond 

to vector b, then P and R should correspond to vector a + b. 

If the point set A satisfies both properties above, then A can be called an affine space [5]. 

Algebraic variety can be known as the common zero set defined by several multivariate polynomial 

equations. If this algebraic variety can be represented by only one function, then this is known as 

hypersurface. [6] 

4.3.  Hausdorff property 

Giving that X is a topological space. X is known as Hausdorff if for all x, y ∈ X, where x ≠ y, there 

exist U1, U2 ∈ A, such that U1 ∩ U2 = ∅. 

For a metric space, for X= metric space, d= distance, for x, y ∈ X, such that x ≠ y. In this case, 

d(x, y) ≠ 0.  

We can assume that U1 is a ball contains x, U2 is a ball contains y. Such that U1 = B(x,
R

2
), U2 =

B(y,
R

2
). To show whether matric space is Hausdorff, we have to check that U1 ∩ U2 = ∅. 
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Figure 2. The example of showing Hausdorff of metric space. 

We can first assume that U1 ∩ U2 ≠ ∅, meaning that two balls are intersecting. Given that z ∈ U1 ∩
U2, so z ∈ U1, z ∈ U2. 

In this case, d(z, x) <
R

2
, we can rewrite this into z ∈ U1 = B(x,

R

2
). Also, we have d(z, y) <

R

2
, 

which can be turned into z ∈ U2 = B(y,
R

2
). Hence, we have: 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) <

𝑅

2
+

𝑅

2
= 𝑅 

Hence, we get that d(x, y) < R, where there is a conflict with the assumption we state before. We 

can summarize by saying that all metric spaces are Hausdorff. 

4.4.  Product space 

For there is a product between two spaces: 𝑋 × 𝑌 = {(𝑥, 𝑦)| 𝑥 ∈ X   y ∈ Y} 
If X is a topological space, and Y is a topological space, then X × Y is also a topological space. 

If X is a circle, giving X = S1 ⊆ R2, Y=R which is a Euclidean topology. Giving that X × Y ⊆
R2 × R = R3 which is a 3-dimensional space. The example of this product is showed by figure 3. 

 

Figure 3. The example of product of topological space. 

Since X is a topological space, there exists a collection of open subsets of X, also, since Y is a 

topological space, there exist B collection of open subsets of Y. The open subsets of X × Y are given 

by all the unions of U × V, where U ∈ A, V ∈ B. 

4.5.  Closed subset 

In topological space, a subset Y is known as a closed subset if X – Y is open. Or we can say that Y is a 

closed subset when its complementary set is open. 

Giving an example, for trivial topology A = {R, ∅}, each subset in it is both open and closed because 

R and ∅ are complement. 
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In a metric space, if all the limit points in the collection are all in this set, then we can consider this 

as a closed set. [7] 

5.  Topological manifolds 

5.1.  Basic properties 

Given that if both X and Y are homomorphic, then they will have the same properties. For example, If 

X is Hausdorff and X and Y are homomorphic, then Y should definitely be Hausdorff. 

5.2.  manifolds 

X topological space is called second countable if there exist {Ui} is a countable set of open sets such 

that if V is open in X, then there exists a Ui ⊆ V. 

X is called a topological manifold when X is a topological space that satisfies these three following 

properties: 

1) X is Hausdorff 

2) X is second countable 

3) For all x ∈ X, there exist a U ⊆ X which is open, such that x ∈ U, and there also exist f: u → u~ 

(homomorphism), where u~ is an open subset of Rn where n represents for the dimension of X. [8] 

Showing that S1 is a topological manifold of dimension 1, given that R is a topological manifold 

of dimension one. For x ∈ R, U ∈ R 

Now we got a circle: 𝑋 = 𝑆1 = {(𝑥, 𝑦) ∈ R2 | 𝑥2 + 𝑦2 = 1} 

We are showing that for any (x, y) ∈ S1, there exists a U open ∈ (x, y) such that U is homomorphic 

to an open subset of R. 

 

Figure 4. Method to prove the circle that it is a topological manifold. 

It is important that (x, y) ≠ (0, −1) which is known as a south pole, means that U = S1 − (0, −1). 
We first draw a line, connecting south pole (0, -1) with point (x, y). This line will then intersect with x-

axis at a point (x0, 0). We obtain a function f: u → R after connecting points, the function f is known 

as stereographic projection. This function has the equation: 
𝑌−𝑌0

𝑦−𝑌0
=

𝑋−𝑋0

𝑥−𝑋0
= 0. 

For this circle, the equation can be written as: 
Y+1

y+1
=

X

x
. 

After we plug in south pole (0, -1) and (x, y), we can further evaluate it to Y =
(y+1)

x
X − 1, also we 

can find out the intersection x0 =
x

y+1
. Due to the case that (0, −1) ∉ U, so the function f(x, y) =

x

y+1
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is continuous. Hence, f −1: R → U: f(x) = (
2x

1+x2 ,
1−x2

1+x2))  is continuous due to the properties we 

mentioned before. u′ = S1 − {(0, 1)} which is the north pole, then we have f ′ = u′ → R, (x, y) →
x

1−y
, 

and hence we got (f ′)−1: R → u′, x → (
2x

1+x2 ,
1−x2

1+x2). 

Hence the circle S1 is a topological manifold of dimension one. 
Further proving shows that a sphere is a two-dimensional topological manifold, having the equation 

of: 

𝑆2 = {(𝑥1, 𝑥2, 𝑥3) ∈ R3 | 𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 1} 

For all (x1, x2, x3) ∈ R2 , we are showing that there exist U = open ∋ (x1, x2, x3) , such that 

∃ f: u → R2 which is homomorphism. Like the circle we mentioned just before, we can take a south 

pole from the sphere, which is (0, 0, 1), hence we have  

𝑢 = 𝑆2 − {(0, 0, 1)} 

 

Figure 5. Method to prove the sphere that it is a topological manifold. 

For f: u → R2 , the line between (x1, x2, x3) and (0, 0, 1) is 
z+1

x3+1
=

y

x2
=

x

x1
. Using the similar 

method, we can obtain the intersection with the plane x3 = 0  is (
x1

x3+1
,

x2

x3+1
, 0) . Hence there is: 

𝑓: 𝑢 → 𝑅2, (𝑥1, 𝑥2, 𝑥3) → (
𝑥1

𝑥3+1
,

𝑥2

𝑥3+1
, 0) , so there is f −1: R2 → u . Hence, we obtain the line 

between (x1, x2, 0) and (0, 0, −1) is 

𝑥

𝑥1
=

𝑦

𝑥2
= 𝑧 + 1 

The intersection with S2 is 

(
2𝑥1

1 + 𝑥1
2 + 𝑥2

2 ,
2𝑥2

1 + 𝑥1
2 + 𝑥2

2 ,
1 − 𝑥1

2 − 𝑥2
2

1 + 𝑥1
2 + 𝑥2

2) 
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Hence f −1: R3 → u, (x1, x2, 0) → (
2x1

1+x1
2+x2

2 ,
2x2

1+x1
2+x2

2 ,
1−x1

2−x2
2

1+x1
2+x2

2). Similarly, as what we did just now, 

take the north pole (0, 0, 1), getting u′ = S2 − {(0, 0,1)}, so we obtain: 

𝑓′: 𝑢′ → 𝑅2, (𝑥1, 𝑥2, 𝑥3) → (
𝑥1

1 − 𝑥3
,

𝑥2

1 − 𝑥3
, 0) 

Finally getting: 

(𝑓′)−1: 𝑅2 → 𝑢′, (𝑥1, 𝑥2, 0) → (
2𝑥1

1 + 𝑥1
2 + 𝑥2

2 ,
2𝑥2

1 + 𝑥1
2 + 𝑥2

2 ,
1 − 𝑥1

2 − 𝑥2
2

1 + 𝑥1
2 + 𝑥2

2) 

Hence we prove that a sphere is a two-dimensional topological manifold. 

A torus is a surface generated by revolving a circle in R3 about an axis that is coplanar with the 

circle (√x2 + y2 − R)
2

+ z2 = r2, when R > r, that is the ring torus [9]. 

6.  Connectedness and compactness 

6.1.  Compactness 

Let X be a topological space. We can say that X is compact if for any set of open subsets ui of X, such 

that X = ⋃ uii∈I , that exist i1, i2, i3, …, in such that X = ⋃ uij

n
j=1  which means that it has finite 

subcovers. 

Tychonoff’s Theorem: In topology, the arbitrary product of compact space is also compact space. 

[10] 

Proving that for X = R, the trivial topology A = {∅, R} is compact.  

Given that X ∪ ∅ = X = R, hence ⋃ Uk = R. In this case, given that Uk = X or R, hence there will 

be the existence of a value of k, leading to Uk = R. Under this condition, there will be a finite subcover 

which satisfies the definition of compactness. Hence, the trivial topology is compact. 

Three more basic theorems for compactness: 

1) Stating a function f: x → Y, it is continuous between topological space. Assume that X is compact. 

Then Imf = f(x) is also compact. 

2) When X is a compact topological space, and C ⊆ X closed, then C is also compact. 

3) Rn with Euclidean topology, and C ⊆ X closed, then C is also compact. 

6.2.  Connectedness 

Given that X is a topological space, we can say that X is connected if we cannot find open subsets A 

and B that satisfy following properties: 

1) X = A ∪ B 

2) A ∩ B = ∅ 

3) A, B ≠ ∅ 

A is both open and closed because X − A = B is open 

If f: x → Y is continuous and X is connected, then f(x) is connected. 

7.  Conclusion 

This paper introduces and explains some fundamental concepts in topological space and its properties, 

as well as topological manifolds and their properties, as well as continuous function and metric spaces. 

To make a conclusion, the paper has introduced the connection between those chapters. For example: 

learning the concept of metric space will help further understanding in topological space, or how 

continuous function performs in topological space and using continuous function to prove an n-

dimensional topological manifolds. However, this article only introduces very rudimental points, so it 

will be unhelpful for those who are seeking for a deeper understanding and explanation of those chapters. 
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In the future, the author plans to conduct additional research in these chapters in order to write an article 

that will deliver senior concepts while also making it much easier to understand. 
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