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Abstract. Understanding typical brain development and its relationship to cognitive abilities
is crucial for developmental neuroscience. Here, I applied normative modeling to a large
dataset of adolescent brain imaging (N > 10,000, aged 9-15 years) to characterize
developmental trajectories of brain structure, function, and white matter microstructure.
Using these normative models, I quantified how individuals deviate from typical
developmental trajectories and investigated whether these deviations predict cognitive
abilities. I found that deviation scores from typical brain development significantly predicted
intelligence and learning ability, outperforming predictions based on raw brain measures.
Multiple brain features contributed to the prediction, including the volumes of memory-
related structures, functional connectivity between attention and cognitive control networks,
and the temporal lobe's white matter microstructure. My findings demonstrate that
normative modeling can capture meaningful individual differences in brain development and
their relationship to cognitive abilities. This approach provides a framework for
understanding typical brain development and identifying clinically relevant developmental
variations.
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1. Introduction

The human brain undergoes profound changes during adolescence, characterized by complex
structural and functional development patterns. These neurodevelopmental processes are crucial for
developing and refining cognitive abilities [1,2]. However, understanding what constitutes “typical”
brain development and identifying meaningful deviations from developmental norms remains a
significant challenge in neuroscience.

Traditional approaches to studying brain development often rely on group-level analyses or case-
control comparisons, which may not capture the full spectrum of individual variation in
neurodevelopment. Recent advances in neuroimaging and computational methods have enabled
more sophisticated approaches to characterizing brain development. Among these, normative
modeling has emerged as a promising framework for quantifying individual differences in brain
structure and function relative to population norms, analogous to growth charts used in pediatrics
[3,4].
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Multiple neuroimaging modalities provide complementary insights into brain development.
Structural MRI reveals changes in brain volume and morphology, diffusion MRI captures white
matter microstructure development, and functional MRI illuminates the coordination of brain
networks. Each measure may develop along distinct trajectories and contribute differently to
cognitive abilities. Understanding how deviations from typical developmental trajectories across
these different brain measures relate to cognitive functioning could provide crucial insights into
neurodevelopmental processes and their behavioral outcomes [5].

In this study, I applied normative modeling to a large dataset of adolescent brain imaging, the
Adolescent Brain Cognitive Development (ABCD) study [6,7], to address three key questions: (1)
What are the typical developmental trajectories of different brain measures during adolescence? (2)
How do individual deviations from these trajectories relate to cognitive abilities, especially
intelligence and learning capacity? (3) Which aspects of brain development are most predictive of
cognitive functioning? I employed multiple neuroimaging modalities to comprehensively
characterize brain development and used machine learning approaches to link developmental
deviations to cognitive outcomes.

2. Materials

1. Jupyter Notebook
2. Publicly available data from the ABCD Study, including MRI and phenotypic data [1]. Further

details on the dataset can be found in the Method section.
3. Python packages: os, pandas, PCNtoolkit, numpy, pickle, matplotlib (pyplot)

3. Method

3.1. Subjects and materials

I analyzed data from the Adolescent Brain Cognitive Development (ABCD) dataset, Release 5.0 [1],
to investigate atypical brain development. The dataset comprises MRI scans of 10,657 unique
participants aged 9-15 years (107 to 188 months) and diverse phenotypic scores. To characterize
brain development comprehensively, I used various measures of brain structure and function from
three MRI modalities: surface area, surface depth, and subcortical volume from T1-weighted MRI;
white matter microstructure (mean-diffusivity and fractional anisotropy) from diffusion MRI;
functional connectivity patterns from resting-state fMRI. This included 605 brain measures in total,
which were subsequently fed into the normative modeling framework (Figure 1A). To validate the
model’s clinical relevance, I examined its relationship with two cognitive measurements: fluid
intelligence, assessed using the WISC-V Matrix Reasoning Test [8,9], and learning ability, assessed
by the Pearson Rey Auditory Verbal Learning Test [10,11].

3.2. Normative modeling and deviation scores

The normative model can be formally described as:

(1)

where     is a brain measure and    is a vector of covariates (primarily age in the study). The
residuals are denoted by     , and     is a nonlinear function learned from the data. By fitting the
model, I predict a set of brain measures from age while simultaneously estimating uncertainty for

y = f (x) + ϵ

  x

ϵ f(x)
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each prediction. These uncertainty estimates are important as they define the normative range: the
predictive confidence intervals directly correspond to percentiles of typical brain development. This
allows me to quantitatively identify atypical patterns as observations that fall outside the expected
range for a given age, with the degree of deviation measures in standard units from the normative
trajectory (Figure 1B).

I used a Hierarchical Bayesian Regression framework to model the nonlinear trajectories of brain
development for each neuroimaging measure. This approach allows me to model both population-
level trends and individual variability while accounting for the hierarchical structure of the data and
parameter uncertainty. After fitting the normative models, I calculated deviation Z-scores for each
individual per measure (Figure 1C). These Z-scores quantify how much each individual’s brain
measures deviate from age-matched population norms. By convention, Z-scores beyond±2 were
considered significant departures from typical development. The analysis was conducted using the
Predictive Clinical Neuroscience Toolkit [12]. The data were split into three folds, with the model
trained on two-thirds of the data and tested on the remaining third, rotating through all possible
combinations. This cross-validation approach helps validate the generalizability of my normative
models and prevents overfitting.

3.3. Validation of deviation scores

To further link the brain measures to cognitive phenotypes and validate the clinical relevance of
their deviation scores, I assessed the predictive power of these deviation scores in predicting
cognitive measures, specifically fluid intelligence and learning ability. I used ElasticNet [13], a
technique that combines L1 and L2 penalties. ElasticNet is particularly suitable for this analysis
because it: 1) handles correlated predictors effectively, which is common in neuroimaging data
where different brain measures may be correlated; 2) helps prevent overfitting through
regularization. Specifically, by letting      denote a cognitive outcome and    the deviation scores, I
seek to minimize the mean squared error between the predicted outcome and the actual outcome:

(2)

The hyperparameters     and �2 were tuned using nested cross-validation. Similarly, I employed
two-fold cross-validation for model evaluation, training on two-thirds of the data and testing on the
remaining third to assess the generalizability of my predictions.

3.4. Specific processes

Normative modeling: Because the ABCD procedure calls for annual or biannual assessments, many
subjects were the same individual at different ages. Before the Bayesian Regression, I split the data
into training and testing data so that the repeated IDs were guaranteed to be in either the training or
testing data to prevent misrepresented errors.

x

arg min
β

||y − Xβ|| + λ2||β||2 + λ1 |β||1∣λ1
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Figure 1. Conceptual overview of the proposed normative modeling approach. (A) I extracted
diverse brain measures from multiple MRI modalities, including T1-weighted MRI, diffusion MRI,

and resting-state fMRI. (B) These brain measures were analyzed within a normative modeling
framework to establish age-dependent population curves. (C) Deviation scores were computed to

quantify how each participant’s brain measures diverged from the expected population norms,
enabling identification of atypical brain development patterns

4. Results

4.1. Normative curves of brain measures

My normative modeling approach revealed distinct developmental trajectories across different brain
measures. The model captured both linear and non-linear age-related patterns while accounting for
population variability.

Most brain volume measures overall showed steady increases throughout early adolescence
(Figures 2A and 2B), reflecting ongoing structural maturation. More complex developmental
patterns emerged in functional connectivity measures derived from resting-state fMRI. Specifically,
functional connectivity measures quantify the temporal synchronization of activity between different
brain networks, providing insights into how brain networks communicate. These measures exhibited
asynchronous developmental trajectories through the brain. For example, the functional connectivity
between the cingulo-opercular network and the fronto-parietal network – systems critical for
cognitive control and attention – increased with age, suggesting enhanced integration of executive
function networks (Figure 3A). In contrast, connectivity between cingulo-opercular and cingulo-
parietal networks weakened, potentially reflecting network segregation and specialization (Figure
3B). These divergent patterns align with modern theories of brain development that propose
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simultaneous integration within cognitive networks and segregation between different functional
systems during adolescence [14,15,16]..

White matter microstructure, assessed through diffusion MRI, also revealed systematic
developmental changes that suggest ongoing myelination and axonal organization. Specifically,
fractional anisotropy – a measure of the directional dependence of water diffusion that increases
with fiber organization and myelination – showed age-related increases (Figure 4A). In contrast,
mean diffusivity, which quantifies the overall magnitude of water diffusion and typically decreases
with cellular density and myelination, showed systematic decreases across white matter tracts
(Figure 4B). These complementary patterns are consistent with continued white matter maturation
during adolescence, likely reflecting increased myelin content and more organized axonal packing
[17].

Figure 2. Example trajectories of structural brain measures. (A) Developmental trajectories of brain
stem volume, exhibiting steady increase during adolescence. (B) Equivalent plot of cerebral white

matter volume in the right hemisphere

Figure 3. Example trajectories of functional brain measures. (A) Developmental trajectories of the
functional connectivity between the cingulo-parietal network and the cingulo-opercular network are
exhibited to increase during adolescence. (B) Equivalent plot between the cingulo-opercular network

and the fronto-parietal network shows a decreasing trend

Figure 4. Example trajectories of microstructural measures. (A) Developmental trajectories of the
fractional anisotropy of white matter associated with the right hemisphere. (B) Equivalent plots of

mean diffusivity
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4.2. Prediction of intelligence and learning abilities from brain development deviations

To investigate the relationship between atypical brain development and cognitive functioning, I used
the deviation scores from my normative models to predict individual differences in intelligence and
learning ability. Using an advanced machine learning technique, ElasticNet, which optimally
combines features while handling multicollinearity inherent in neuroimaging data, I achieved
significant predictive accuracy for both cognitive measures (Figure 5). The model predicted
intelligence scores with a correlation of r=0.30 (p<0.0001) between predicted and actual scores, and
learning ability with a correlation of r = 0.27 (p < 0.0001). These correlations, while moderate in
magnitude, are highly significant given the large sample size and are consistent with the expected
multifactorial nature of cognitive abilities.

The predictive accuracy suggests that deviations from typical brain development explain
approximately 9% of the variance in intelligence scores and 7% of the variance in learning ability.
These effect sizes are meaningful in the context of cognitive neuroscience, where brain-behavior
relationships are typically complex and influenced by multiple factors, including genetics,
environment, and measurement noise. Moreover, the similar magnitude of prediction accuracy for
both cognitive measures suggests that deviations from normative brain development may have
broadly comparable impacts across different cognitive domains.

Importantly, these predictions were achieved using cross-validation, demonstrating the
generalizability of my findings to unseen data and suggesting robust relationships between brain
development patterns and cognitive functioning. The successful prediction of cognitive abilities
from deviation scores corroborates the utility of normative modeling in capturing
neurodevelopmentally relevant individual differences.

Figure 5. Predictions of intelligence and learning ability from deviation scores. (A) Prediction
accuracy of intelligence, assessed by the WISC-V Matrix Reasoning Test. (B) Prediction accuracy of
the learning score, assessed by the Pearson Rey Auditory Verbal Learning Test. Both tasks are highly

significant

4.3. Deviation scores outperformed the original brain measures in predicting intelligence and
learning ability

To further evaluate the utility of the normative modeling approach, I compared the predictive power
of deviation scores against that of the original brain measures. Using the same ElasticNet technique
and cross-validation procedures, deviation scores achieved higher prediction accuracy than the
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original brain measures (Figure 6). This enhanced predictive power suggests that quantifying how an
individual deviates from age-expected norms provides more informative features for predicting
cognitive abilities than raw brain measures alone.

The superior performance of deviation scores can be attributed to several factors. First, deviation
scores inherently account for age-related variations in brain structure and function, effectively
normalizing developmental differences across the adolescent sample. Second, these scores capture
not just the absolute values of brain measures but their relationship to age-appropriate expectations,
providing a more nuanced characterization of brain development. Third, by expressing brain
measures in terms of their deviation from population norms, I may better capture individually
meaningful variations that are most relevant to cognitive functioning.

Figure 6. Predictions of intelligence and learning ability from deviation scores. (A) Prediction
accuracy of intelligence, assessed by the WISC-V Matrix Reasoning Test. (B) Prediction accuracy of
the learning score, assessed by the Pearson Rey Auditory Verbal Learning Test. Both tasks are highly

significant

4.4. Regional contributions to cognitive prediction

Analysis of ElasticNet coefficients revealed that multiple brain features contributed to cognitive
prediction, with substantial overlap between predictors of intelligence and learning ability. Brain
volume deviations, particularly in regions crucial for memory and higher-order cognition, such as
the anteromedial temporal lobe and hippocampus, emerged as important predictors. These findings
align with established literature linking hippocampal structure to both learning and intelligence,
given its fundamental role in memory consolidation and information processing.

Functional connectivity deviations also provided strong predictive power, especially the
connections between the cingulo-parietal network and retrosplenial temporal network, as well as
between visual and cingulo-opercular networks. The involvement of these networks suggests that
both cognitive abilities rely on the integration of multiple brain systems: the cingulo-parietal
network for attention and cognitive control, the retrosplenial temporal network for memory and
spatial cognition, and the cingulo-opercular network for sustained task control and learning.

White matter microstructure, particularly fractional anisotropy in sub-adjacent white matter
associated with parahippocampal regions, also contributed significantly to prediction. This
highlights the importance of structural connectivity in supporting cognitive function, potentially by
facilitating efficient communication between key brain regions.
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The overlap in predictive features between intelligence and learning ability suggests these
cognitive functions may rely on shared neural substrates. This finding supports theories proposing
that learning ability and intelligence share common biological underpinnings, particularly in brain
circuits involved in memory, attention, and information processing [18,19].

Figure 7. Regional contribution to the prediction of intelligence. A variety of deviation scores
contributed to the prediction of intelligence. Notably, features associated with attention and

cognitive control networks are particularly prominent

Figure 8. Regional contribution to the learning score. A variety of deviation scores contributed to the
prediction of intelligence. Notably, features associated with the hippocampus stand out

5. Discussion

In this study, I employed normative modeling to characterize typical brain development patterns and
their relationship to cognitive abilities in a large adolescent sample. My analysis revealed several
key findings. First, I observed distinct developmental trajectories across different brain measures:
while brain volumes showed steady increases, functional connectivity displayed more complex,
network-specific patterns of integration and segregation. White matter microstructure exhibited
systematic changes consistent with ongoing myelination, with increasing fractional anisotropy and
decreasing mean diffusivity across development.

Second, I demonstrated that deviations from these normative trajectories significantly predicted
individual differences in both intelligence and learning ability. The moderate but highly significant
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prediction accuracies are particularly noteworthy given the complex, multifactorial nature of
cognitive abilities. Importantly, these deviation-based predictions outperformed predictions based on
raw brain measures, highlighting the value of normative modeling in capturing developmentally
relevant individual differences.

Third, my analysis revealed that multiple brain features contributed to cognitive prediction,
including volumetric measures of memory-related structures, functional connectivity between
attention and cognitive control networks, and white matter microstructure in temporal regions. The
overlap in predictive features between intelligence and learning ability suggests these cognitive
functions may rely on shared neural substrates, particularly in circuits supporting memory, attention,
and information processing.

These findings have several important implications. From a methodological perspective, my
results validate normative modeling as a powerful approach for studying individual differences in
brain development. The superior performance of deviation scores over raw brain measures suggests
that accounting for age-appropriate expectations is crucial to investigating brain-behavior
relationships in developmental populations. From a theoretical perspective, my findings support
models of adolescent brain development that emphasize the importance of both structural maturation
and functional network reorganization in supporting cognitive development.

The observation that deviations across multiple brain systems contribute to cognitive abilities
highlights the distributed nature of neural substrates that support intelligence and learning. The
involvement of memory-related structures and their connections aligns with theories proposing that
efficient information processing and integration across brain networks underlie general cognitive
ability.

Several limitations exist in the current study. First, although significant, the predictive accuracies
for intelligence and learning ability are moderate. These accuracies need improvement before such
models can be considered for clinical applications or individual-level prediction. Future work could
enhance predictive power through several approaches: (1) incorporating additional brain measures,
such as more detailed connectivity metrics or dynamic functional connectivity patterns; (2)
including genetic information and environmental factors, which likely interact with brain
development to influence cognitive outcomes.

A second important limitation is that my current normative modeling approach treats each brain
measure independently, potentially missing meaningful interactions between different modalities.
Brain development involves coordinated changes across structural, functional, and microstructural
properties, and these relationships are informative for understanding cognitive development. Future
studies should develop multivariate normative models that can capture cross-modal relationships
and their developmental trajectories. Such approaches may reveal how deviations in one aspect of
brain development relate to or potentially compensate for deviations in others, providing a more
comprehensive understanding of brain-behavior relationships.

6. Conclusion

Brain development in adolescents is the transition period between the brain of a child and that of an
adult, when fine-tuning occurs. With evolving algorithmic techniques and expanding databases,
neuroscience research can become increasingly individualized and representative of brain growth. In
this paper, I applied normative modeling to evaluate the development of adolescent brains. This
study provides doctors and researchers with a method to assess the development of children’s brains,
with the potential capability of detecting abnormal growth. Furthermore, by linking brain measures
with cognitive scores, MRI scans may provide a more reliable metric for quantifying intelligence
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that disregards environmental disruptions (e.g., hours of sleep or noise of testing environment).
Overall, my results emphasize the value of the methodology as a tool for neuroscience research.
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