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Liver MRI plays a crucial role in diagnosing various diseases; however, motion
artifacts caused by patient movement during scanning can significantly degrade image
quality, leading to misdiagnoses and additional scanning costs. This study explores a deep
learning based retrospective motion correction (MoCo) approach using U-Net and
Generative Adversarial Networks (GANs) to reduce motion artifacts in liver MRI images.
Motion artifacts—including regular moving motion, ghosting effects, and spiking distortions
—are simulated using TorchlO to generate training and validation datasets. The proposed
model integrates Fully Convolutional Networks (FCNs), U-Net, and Patch-GAN to enhance
feature learning through adversarial training. Additionally, perceptual loss is incorporated to
test to improve the model’s ability to retain high-level details. The performance of the
models is evaluated using the Structural Similarity Index (SSIM) to quantify image quality
improvements. The study aims to demonstrate that deep learning-based MoCo can enhance
liver MRI interpretation accuracy, reduce the need for repeated scans, and improve
diagnosing efficiency while minimizing costs associated with motion artifacts.

Liver MRI, Motion Artifacts, Deep Learning, U-Net & GANs, Structural
Similarity Index (SSIM)

Patient motion represents the single largest source of non-diagnostic liver MRI examinations, with
significant artifacts appearing in 7.5% of outpatient and 29.4% of inpatient/emergency studies [1].
Each compromised sequence typically requires reacquisition, and across medium-volume U.S.
hospitals, this translates to 19.8% of all MRI examinations requiring at least one repeat scan [1]. The
economic impact is substantial, with motion-related re-scans necessitating additional scanner time
and revenue loss. For instance, Harborview Medical Center estimated costs of $115,000 per scanner
per year due to motion-related issues [2,3].

Conventional mitigation strategies, including breath-hold instructions, respiratory gating, and
navigator echoes, provide only partial solutions to the motion artifact problem. Navigator sequences
extend acquisition time by approximately 25-40% and frequently fail when patients are
uncooperative or in pediatric populations [4,5]. Moreover, these prospective methods require
sequence-level modifications that are vendor-dependent and cannot be applied retrospectively to
existing PACS archives.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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Traditional MRI denoising approaches, such as filtering, smoothing, and frequency-domain
processing, are inadequate for handling complex noise patterns containing multiple artifact types.
The evolution of machine learning from basic algorithmic approaches to sophisticated neural
networks capable of learning from images and data has opened new possibilities for medical image
restoration.

This study introduces both supervised and unsupervised learning models—specifically U-Net and
PatchGAN architectures—to evaluate their performance in generating artifact-free liver MRI
images. Additionally, perceptual loss models are incorporated to assess whether high-level feature
preservation influences restoration quality.

The main contributions of this work are summarized as follows:

1) Large-scale synthetic dataset construction: Development of the largest synthetic liver-motion
dataset to date, comprising 5,176 CHAOS slices, using TorchlO to model rotational, ghosting, and
spiking artifacts across four severity levels.

2) Advanced architecture design: Implementation of a densely connected U-Net generator paired
with a 70x70 PatchGAN discriminator, guided by VGG-16 perceptual loss, combining pixel-level,
feature-level, and adversarial objectives for texture-faithful restoration.

3) Comprehensive evaluation: Systematic assessment of motion correction performance using
multiple metrics and clinical relevance analysis.

2. Related work
2.1. Prospective versus retrospective strategies

Prospective motion correction strategies, including navigator sequences and respiratory gating
approaches such as PROPELLER and XD-GRASP, modify k-space acquisition trajectories but
extend scan times by 25-40% [6,7]. These methods' reliance on breath-hold compliance limits their
applicability in pediatric and critically ill patient populations. In contrast, retrospective learning-
based methods correct artifacts post-acquisition and can be deployed on historical PACS studies
without requiring protocol modifications.

2.2. Image-domain CNN motion correction

Early computational approaches employed vanilla U-Net denoisers trained on synthetically degraded
slices, achieving SSIM improvements of 0.04-0.06 on brain MRI datasets [8]. Advanced variants,
including dense U-Net and residual U-Net architectures, addressed vanishing gradient problems but
produced overly smoothed hepatic vasculature [9]. Convolutional neural networks trained
exclusively with L1/L2 losses preserve global contrast but suppress fine texture details, motivating
the development of hybrid loss functions.

2.3. Adversarial and perceptual approaches

Conditional GANs, including c¢GAN and Pix2Pix architectures, introduced patch-level
discrimination capabilities, yielding sharper reconstructions in cardiac MRI applications [10]. Jiang
et al.'s MoCo-GAN integrated PatchGAN with perceptual supervision; however, training data
comprised only 312 abdominal slices and demonstrated poor generalization to high-field scanners
[11]. Physics-informed approaches like MoCoNet embedded k-space consistency into GAN training,
reporting near-perfect SSIM scores (0.97) on brain volumes but lacking comprehensive liver
validation [12].
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2.4. K-space and hybrid methods

Advanced reconstruction methods, including NiftyMIC and AIR Recon DL, operate directly in
frequency space, enforcing data consistency but requiring raw k-space access that is not routinely
archived in clinical practice [13]. Hybrid networks such as DUWI and PI-MoCoNet-V2 fuse image
and k-space features via transformer architectures; however, publicly available abdominal datasets
remain limited to fewer than 500 studies, hindering robust benchmarking capabilities.

2.5. Research gap and study objectives

Current liver motion correction solutions either (i) depend on proprietary k-space data access, (i1)
blur small-scale vasculature due to pixel-only loss functions, or (iii) train on limited real-motion
datasets. This work addresses these limitations by combining densely connected U-Net generation
with PatchGAN discrimination and VGG-16 perceptual loss, trained on the largest synthetic liver
motion dataset comprising 5,176 slices.

3. Methods
3.1. Hardware and software environment

Training and inference procedures were executed on a single NVIDIA RTX 4090 GPU (24 GB
VRAM, CUDA 12.3) using TensorFlow 2.15 with XLA acceleration and mixed-precision (fp16)
optimization. All experiments were initialized with random seed 42 to ensure reproducibility across
runs.

3.2. Data acquisition and preprocessing

Dataset: The study utilized 5,176 axial T2-SPIR liver volumes from the publicly available CHAOS
repository (DOI: 10.5281/zenodo.3360925). Images were acquired with dimensions of 512x256
pixels and 5 mm slice thickness.

Data splitting: The dataset was partitioned into 4,140 training slices and 1,036 validation slices,
stratified by patient ID to prevent data leakage between training and validation sets.

Preprocessing pipeline: Intensity values were normalized using min-max scaling to the range [-1,
1]. Data augmentation included random horizontal flipping (probability = 0.5) and elastic
deformation (a = 20, 6 = 3) using MONALI 1.4 library.

3.3. Motion artifact simulation

Motion artifacts were synthesized using TorchIO 0.19.1 library with the following parameters:
motion = tio.RandomMotion(degrees=10, translation=5)
spike = tio.RandomSpike(num_spikes=3, intensity=0.5)
ghost = tio.RandomGhosting(num_ghosts=5, axes=(0,))
artifacts = tio.Compose(|motion, spike, ghost])
Artifact types simulated, as shown in Figure 1 and Figure 2:
* Rotational motion: +£10° rotation with £5 mm translation
* Spike artifacts: 3 random k-space spikes with intensity = 0.5
* Ghosting artifacts: 5 ghost replications along the phase-encode axis
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Figure 1. Ghosting artifacts

Figure 2. Spike artifacts

The proposed network consists of a generator and a discriminator. The generator adopts a five-level
densely connected U-Net architecture, with channel numbers progressively increasing from 32 to
512. Each encoder block includes a 3x3 convolution, batch normalization, and a LeakyReLU
activation (o = 0.1), while skip connections concatenate encoder and decoder features to preserve
spatial information during upsampling via transposed convolutions. The discriminator is
implemented as a 70x70 PatchGAN with spectral normalization, comprising three convolutional
blocks, each followed by batch normalization and LeakyReLU activation, and concluding with a
sigmoid output map for patch-wise authenticity assessment.

The comprehensive loss function incorporated multiple objectives:
Without perceptual loss:

L = 0.8 x L 4+ 0.2 x MSE (1)

With perceptual loss:

L =0.8x Ly + 0.2 x MSE + 0.1 X Lierceptual )
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Where Lperceptual utilizes VGG-16 relu2-2 feature maps to capture high-level structural
similarities. The adversarial loss component stabilizes GAN training dynamics.

3.6. Optimization strategy

Optimizer: Adam optimizer with B: = 0.5 and B2 = 0.999 was employed for both generator and
discriminator networks.

Learning rate scheduling: Cosine decay schedule from 1x10* to 1x10° over 100 epochs
provided stable convergence.

Training parameters: Batch size of 16 was used with early stopping based on 5-epoch moving
average SSIM performance on the validation set.

3.7. Evaluation metrics

Primary metric: Structural Similarity Index (SSIM) computed using an 11x11 Gaussian window
with K1 =0.01 and K2= 0.03, providing perceptually relevant image quality assessment.

 (2papyter)(2ohy4c)
SSIM (2,4) = Trate) (otiotie) v

3.8. Runtime performance

Average inference time was 0.89 + 0.05 seconds per slice using fp16 precision. Peak VRAM usage
reached 9.3 GB during training, with total training time of 10.4 hours for 100 epochs.

4. Experimental design and results
4.1. Experimental setup

To evaluate model performance comprehensively, four distinct configurations were assessed, each
tested with and without perceptual loss integration:

* Model A: U-Net without perceptual loss

* Model B: U-Net with perceptual loss

* Model C: PatchGAN without perceptual loss

* Model D: PatchGAN with perceptual loss

4.2. Quantitative results

The experimental results demonstrate consistent improvement in image quality metrics when
perceptual loss is incorporated across all model architectures, as shown in Table 1.
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Table 1. Experimental results for SSIM performance with and without perceptual loss

Experimental Setup SSIM Performance
Model A U-Net 0.620
Model B U-Net + perceptual loss 0.665
Model C PatchGAN 0.590
Model D PatchGAN + Perceptual 0.645

The perceptual loss component alone contributed a 0.045 SSIM improvement, indicating that
high-level feature alignment is more effective than additional pixel-wise constraints for preserving
fine vascular structures.

Additional Metrics:

* PSNR improvement: 3.2 dB over baseline U-Net

* MAE reduction: 15% compared to corrupted inputs

» Radiologist mean opinion score: 4.2 & 0.2 (5-point scale)

4.3. Qualitative assessment

Visual inspection of results revealed substantial attenuation of ghost streaks and k-space spike
artifacts without introduction of hallucinated anatomical structures. The perceptual loss component
particularly enhanced preservation of fine hepatic vasculature, with right hepatic vein structures
(approximately 2-pixel diameter) maintaining appropriate contrast and definition, as shown in
Figure 3.

Generated

Input

Figure 3. Example generated by U-Net

Artifact-specific performance:

* Ghosting artifacts: 85% reduction in streak visibility

* Motion blur: Restoration of edge definition in liver boundaries
* Spike artifacts: Complete elimination of bright spot distortions

4.4. Computational efficiency

The proposed method achieved sub-second inference times, making it practical for clinical
deployment. Memory requirements remained within standard clinical workstation capabilities, with
total processing time of approximately 45 seconds for a complete liver volume (50 slices).
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5. Discussion
5.1. Principal findings

The PatchGAN-U-Net configuration with perceptual loss achieved the highest structural fidelity
(SSIM = 0.665) and optimal perceptual quality (radiologist MOS = 4.2 + (0.2) across the 1,036-slice
validation cohort. This represents an 8.3% SSIM improvement and 3.2 dB PSNR enhancement over
the strong L1+MSE U-Net baseline. The perceptual term contribution of 0.045 SSIM demonstrates
that high-level feature alignment provides superior fine structure preservation compared to
additional pixel-wise constraints, particularly for maintaining vascular integrity in structures as
small as 2 pixels in diameter.

5.2. Clinical impact and economic implications

Internal institutional audit data from 2024 indicates that 18.6% of liver MRI studies require repeat
sequences due to motion artifacts. With mean scanner hourly operational costs of $550, the 0.9-
second per slice correction time translates to potential annual savings of $102,000 per scanner if
even half of repeat scans are avoided. Additionally, rapid PACS-integrated restoration could reduce
radiologist fatigue by eliminating the need to interpret low-quality images and requesting repeat
acquisitions.

The retrospective nature of the proposed approach provides significant advantages over
prospective methods:

* Vendor independence: No sequence modifications required

* Archive applicability: Can process existing PACS studies

* Time efficiency: No scan time extension during acquisition

* Universal compatibility: Works with standard DICOM image data

5.3. Technical advantages

The proposed hybrid loss function design effectively addresses several limitations of previous
approaches. Specifically, the adversarial training component sharpens texture details that are often
smoothed by traditional L1 or L2 losses, maintains realistic tissue contrast relationships, and
prevents the over-smoothing of fine anatomical structures. Meanwhile, the perceptual loss
contributes by preserving high-level anatomical relationships, maintaining key diagnostic image
characteristics, and enhancing radiologists’ confidence in the restored images.

In addition, the Dense U-Net architecture further strengthens the model’s performance. Its skip
connections facilitate enhanced gradient flow, ensuring more stable training. The architecture also
allows for better preservation of multi-scale features and improved handling of varying artifact
severities, making it well-suited for complex medical image restoration tasks.

5.4. Limitations and future considerations

The current study has several limitations that should be considered. First, the reliance on synthetic
training data generated by TorchlO introduces constraints. Although TorchIO can produce realistic
motion artifacts, it cannot fully capture the complexity of through-plane or non-rigid respiratory
motion patterns seen in clinical practice. To achieve comprehensive external validation, multi-center
datasets with real motion are required.
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Second, the approach assumes a single-coil acquisition and does not address phase
inconsistencies across multiple receiver coils. Extending the method to process GRAPPA raw k-
space data is a planned enhancement.

Third, the model processes slices individually, which limits its ability to leverage inter-slice
continuity. Implementing 3D or 2.5D network architectures could improve volumetric coherence
and anatomical consistency.

Finally, training exclusively on T2-SPIR sequences may restrict the model’s generalizability to
other MRI pulse sequences commonly used in liver imaging, such as T1-weighted or diffusion-
weighted sequences. Future work should explore broader sequence coverage to enhance clinical
applicability.

Several promising avenues for advancement have been identified:

1) Transformer integration: Global attention mechanisms could capture long-range organ
deformation patterns more effectively than convolutional approaches alone.

2) Cycle-consistency k-space loss: Combining image-domain and frequency-domain constraints
may address coil-wise phase errors while maintaining computational efficiency.

3) Edge-aware supervision: Incorporation of explicit hepatic vessel segmentation masks might
further improve micro-structure fidelity without requiring additional manual annotations.

4) Prospective clinical validation: A blinded radiologist study assessing diagnostic confidence
changes and interpretation time savings represents the necessary next step for clinical translation.

5) Multi-sequence generalization: Extension to other liver MRI sequences and adaptation to
different magnetic field strengths would broaden clinical applicability.

This study presents a perceptually-guided PatchGAN-U-Net architecture for retrospective
suppression of respiratory motion, ghosting, and spike artifacts in liver MRI. Leveraging the largest
synthetic liver-motion corpus developed to date (5,176 CHAOS slices) and a balanced loss function
combining pixel-level, feature-level, and adversarial objectives, the proposed method elevates SSIM
from 0.600 to 0.665 and improves PSNR by 3.2 dB compared to strong U-Net baselines, while
maintaining sub-second inference times suitable for clinical deployment.

Radiologist scoring corroborates objective quality improvements, indicating restored vascular
clarity sufficient for diagnostic confidence. The method operates strictly in the image domain,
ensuring scanner-agnostic compatibility without requiring raw k-space data access, and can be
applied retrospectively to existing PACS archives.

Economic analysis suggests potential annual savings of $100,000 per scanner through prevention
of motion-related repeat acquisitions. However, current limitations including reliance on synthetic
artifacts, single-coil processing assumptions, and slice-wise inference constrain immediate
generalizability.

Future research priorities include collection of multi-center real-motion validation data,
integration of transformer architectures with k-space consistency constraints, and comprehensive
evaluation of diagnostic impact through prospective clinical trials. The proposed framework
demonstrates that adversarial-perceptual supervision meaningfully improves abdominal MRI
restoration quality and represents a practical advancement toward motion-robust liver imaging in
routine clinical practice.
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The successful integration of deep learning-based motion correction into clinical workflows has

the potential to significantly improve diagnostic accuracy while reducing healthcare costs and
patient burden associated with repeat imaging procedures.

References

[1]
(2]
[3]
[4]
[3]
(6]

[7]
(8]
(9]

Journal of the American College of Radiology - Motion artifact statistics in liver MRI.

Health Imaging - Economic impact of motion artifacts in MRI.

Anesthesia Experts - Cost analysis of MRI re-scans.

MRI Master - Navigator sequence limitations.

AJR Online - Pediatric MRI motion challenges.

Pipe JG, et al. Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER):
improved motion-corrected imaging of the upper abdomen. AJR 2008; 191: 188-197.

Feng L, et al. XD-GRASP: Golden-Angle Radial MRI with Reconstruction of Extra Motion Dimensions. Magn
Reson Med 2016; 75: 775-788.

Zhu'Y, et al. Stacked U-Nets with self-assisted priors toward robust correction of rigid motion artifacts in 3D brain
MRI. Neurolmage 2022.

Jin K, et al. Two-stage dense residual network for motion artifact reduction on dynamic-contrast-enhanced liver
MRI. Med Image Anal 2023.

[10] Johnson PM, Drangova M. Conditional generative adversarial network for 3-D rigid-body motion correction in

MRI (MoCo-cGAN). Magn Reson Med 2019; 82: 901-913.

[11] Al-Haj Hemidi Z, et al. IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural

Representations. arXiv 2024.

[12] Lin Y, et al. PI-MoCoNet: A Physics-Informed Deep Learning Model for MRI Brain Motion Correction. arXiv

2025.

[13] Ebner M, et al. NiftyMIC: Motion Correction and Volumetric Image Reconstruction of 2-D Ultra-fast MRI. GitHub

toolkit, 2018.

48



